Skip to main content
Solve for C
Tick mark Image
Solve for E
Tick mark Image

Similar Problems from Web Search

Share

CE=\sqrt{12\sqrt{2}\sqrt{6}-6\left(-\sqrt{6}\right)\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Square -\sqrt{6}-3\sqrt{2}-2\sqrt{6}.
CE=\sqrt{12\sqrt{2}\sqrt{2}\sqrt{3}-6\left(-\sqrt{6}\right)\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
CE=\sqrt{12\times 2\sqrt{3}-6\left(-\sqrt{6}\right)\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
CE=\sqrt{24\sqrt{3}-6\left(-\sqrt{6}\right)\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply 12 and 2 to get 24.
CE=\sqrt{24\sqrt{3}+6\sqrt{6}\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply -6 and -1 to get 6.
CE=\sqrt{24\sqrt{3}+6\sqrt{2}\sqrt{3}\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\sqrt{6}\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply -4 and -1 to get 4.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply \sqrt{6} and \sqrt{6} to get 6.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+4\times 6+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
The square of \sqrt{6} is 6.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+24+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply 4 and 6 to get 24.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+24+9\times 2+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
The square of \sqrt{2} is 2.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+24+18+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply 9 and 2 to get 18.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+42+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Add 24 and 18 to get 42.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+42+\left(\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Calculate -\sqrt{6} to the power of 2 and get \left(\sqrt{6}\right)^{2}.
CE=\sqrt{24\sqrt{3}+12\sqrt{3}+24+42+\left(\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Do the multiplications.
CE=\sqrt{36\sqrt{3}+24+42+\left(\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Combine 24\sqrt{3} and 12\sqrt{3} to get 36\sqrt{3}.
CE=\sqrt{36\sqrt{3}+66+\left(\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Add 24 and 42 to get 66.
CE=\sqrt{36\sqrt{3}+66+6+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
The square of \sqrt{6} is 6.
CE=\sqrt{36\sqrt{3}+72+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Add 66 and 6 to get 72.
CE=\sqrt{37\sqrt{3}+72+\sqrt{2}+2\sqrt{2}}
Combine 36\sqrt{3} and \sqrt{3} to get 37\sqrt{3}.
CE=\sqrt{37\sqrt{3}+72+3\sqrt{2}}
Combine \sqrt{2} and 2\sqrt{2} to get 3\sqrt{2}.
EC=\sqrt{3\sqrt{2}+37\sqrt{3}+72}
The equation is in standard form.
\frac{EC}{E}=\frac{\sqrt{3\sqrt{2}+37\sqrt{3}+72}}{E}
Divide both sides by E.
C=\frac{\sqrt{3\sqrt{2}+37\sqrt{3}+72}}{E}
Dividing by E undoes the multiplication by E.
CE=\sqrt{12\sqrt{2}\sqrt{6}-6\left(-\sqrt{6}\right)\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Square -\sqrt{6}-3\sqrt{2}-2\sqrt{6}.
CE=\sqrt{12\sqrt{2}\sqrt{2}\sqrt{3}-6\left(-\sqrt{6}\right)\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
CE=\sqrt{12\times 2\sqrt{3}-6\left(-\sqrt{6}\right)\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
CE=\sqrt{24\sqrt{3}-6\left(-\sqrt{6}\right)\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply 12 and 2 to get 24.
CE=\sqrt{24\sqrt{3}+6\sqrt{6}\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply -6 and -1 to get 6.
CE=\sqrt{24\sqrt{3}+6\sqrt{2}\sqrt{3}\sqrt{2}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}-4\left(-\sqrt{6}\right)\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\sqrt{6}\sqrt{6}+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply -4 and -1 to get 4.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+4\left(\sqrt{6}\right)^{2}+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply \sqrt{6} and \sqrt{6} to get 6.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+4\times 6+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
The square of \sqrt{6} is 6.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+24+9\left(\sqrt{2}\right)^{2}+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply 4 and 6 to get 24.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+24+9\times 2+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
The square of \sqrt{2} is 2.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+24+18+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Multiply 9 and 2 to get 18.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+42+\left(-\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Add 24 and 18 to get 42.
CE=\sqrt{24\sqrt{3}+6\times 2\sqrt{3}+4\times 6+42+\left(\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Calculate -\sqrt{6} to the power of 2 and get \left(\sqrt{6}\right)^{2}.
CE=\sqrt{24\sqrt{3}+12\sqrt{3}+24+42+\left(\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Do the multiplications.
CE=\sqrt{36\sqrt{3}+24+42+\left(\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Combine 24\sqrt{3} and 12\sqrt{3} to get 36\sqrt{3}.
CE=\sqrt{36\sqrt{3}+66+\left(\sqrt{6}\right)^{2}+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Add 24 and 42 to get 66.
CE=\sqrt{36\sqrt{3}+66+6+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
The square of \sqrt{6} is 6.
CE=\sqrt{36\sqrt{3}+72+\sqrt{2}+\sqrt{3}+2\sqrt{2}}
Add 66 and 6 to get 72.
CE=\sqrt{37\sqrt{3}+72+\sqrt{2}+2\sqrt{2}}
Combine 36\sqrt{3} and \sqrt{3} to get 37\sqrt{3}.
CE=\sqrt{37\sqrt{3}+72+3\sqrt{2}}
Combine \sqrt{2} and 2\sqrt{2} to get 3\sqrt{2}.
CE=\sqrt{3\sqrt{2}+37\sqrt{3}+72}
The equation is in standard form.
\frac{CE}{C}=\frac{\sqrt{3\sqrt{2}+37\sqrt{3}+72}}{C}
Divide both sides by C.
E=\frac{\sqrt{3\sqrt{2}+37\sqrt{3}+72}}{C}
Dividing by C undoes the multiplication by C.