Solve for C
C=\frac{12}{5D}
D\neq 0
Solve for D
D=\frac{12}{5C}
C\neq 0
Share
Copied to clipboard
CD=\sqrt{\frac{144}{25}}
Subtract \frac{256}{25} from 16 to get \frac{144}{25}.
CD=\frac{12}{5}
Rewrite the square root of the division \frac{144}{25} as the division of square roots \frac{\sqrt{144}}{\sqrt{25}}. Take the square root of both numerator and denominator.
DC=\frac{12}{5}
The equation is in standard form.
\frac{DC}{D}=\frac{\frac{12}{5}}{D}
Divide both sides by D.
C=\frac{\frac{12}{5}}{D}
Dividing by D undoes the multiplication by D.
C=\frac{12}{5D}
Divide \frac{12}{5} by D.
CD=\sqrt{\frac{144}{25}}
Subtract \frac{256}{25} from 16 to get \frac{144}{25}.
CD=\frac{12}{5}
Rewrite the square root of the division \frac{144}{25} as the division of square roots \frac{\sqrt{144}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{CD}{C}=\frac{\frac{12}{5}}{C}
Divide both sides by C.
D=\frac{\frac{12}{5}}{C}
Dividing by C undoes the multiplication by C.
D=\frac{12}{5C}
Divide \frac{12}{5} by C.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}