Solve for C (complex solution)
\left\{\begin{matrix}C=-\frac{C_{x}m_{1}}{m_{1}+m_{N}+1}\text{, }&m_{1}\neq -\left(m_{N}+1\right)\\C\in \mathrm{C}\text{, }&\theta =\theta _{1}\text{ or }\left(m_{1}=0\text{ and }m_{N}=-1\right)\text{ or }\left(C_{x}=0\text{ and }m_{1}=-\left(m_{N}+1\right)\right)\end{matrix}\right.
Solve for C_x (complex solution)
\left\{\begin{matrix}C_{x}=-\frac{C\left(m_{1}+m_{N}+1\right)}{m_{1}}\text{, }&m_{1}\neq 0\\C_{x}\in \mathrm{C}\text{, }&\theta =\theta _{1}\text{ or }\left(C=0\text{ and }m_{1}=0\right)\text{ or }\left(m_{1}=0\text{ and }m_{N}=-1\right)\end{matrix}\right.
Solve for C
\left\{\begin{matrix}C=-\frac{C_{x}m_{1}}{m_{1}+m_{N}+1}\text{, }&m_{1}\neq -\left(m_{N}+1\right)\\C\in \mathrm{R}\text{, }&\theta =\theta _{1}\text{ or }\left(m_{1}=0\text{ and }m_{N}=-1\right)\text{ or }\left(C_{x}=0\text{ and }m_{1}=-\left(m_{N}+1\right)\right)\end{matrix}\right.
Solve for C_x
\left\{\begin{matrix}C_{x}=-\frac{C\left(m_{1}+m_{N}+1\right)}{m_{1}}\text{, }&m_{1}\neq 0\\C_{x}\in \mathrm{R}\text{, }&\theta =\theta _{1}\text{ or }\left(C=0\text{ and }m_{1}=0\right)\text{ or }\left(m_{1}=0\text{ and }m_{N}=-1\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
C\theta -C\theta _{1}+m_{1}C\left(\theta -\theta _{1}\right)+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C_{x} by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=0
Use the distributive property to multiply m_{N}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}-m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-m_{1}C_{x}\theta
Subtract m_{1}C_{x}\theta from both sides. Anything subtracted from zero gives its negation.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-m_{1}C_{x}\theta +m_{1}C_{x}\theta _{1}
Add m_{1}C_{x}\theta _{1} to both sides.
Cm_{1}\theta -Cm_{1}\theta _{1}+Cm_{N}\theta -Cm_{N}\theta _{1}+C\theta -C\theta _{1}=C_{x}m_{1}\theta _{1}-C_{x}m_{1}\theta
Reorder the terms.
\left(m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}\right)C=C_{x}m_{1}\theta _{1}-C_{x}m_{1}\theta
Combine all terms containing C.
\frac{\left(m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}\right)C}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}=\frac{C_{x}m_{1}\left(\theta _{1}-\theta \right)}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}
Divide both sides by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C=\frac{C_{x}m_{1}\left(\theta _{1}-\theta \right)}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}
Dividing by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1} undoes the multiplication by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C=-\frac{C_{x}m_{1}}{m_{1}+m_{N}+1}
Divide m_{1}C_{x}\left(\theta _{1}-\theta \right) by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\left(\theta -\theta _{1}\right)+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C_{x} by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=0
Use the distributive property to multiply m_{N}C by \theta -\theta _{1}.
-C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta
Subtract C\theta from both sides. Anything subtracted from zero gives its negation.
m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}
Add C\theta _{1} to both sides.
-m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta
Subtract m_{1}C\theta from both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}
Add m_{1}C\theta _{1} to both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}-m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}-m_{N}C\theta
Subtract m_{N}C\theta from both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}-m_{N}C\theta +m_{N}C\theta _{1}
Add m_{N}C\theta _{1} to both sides.
C_{x}m_{1}\theta -C_{x}m_{1}\theta _{1}=Cm_{1}\theta _{1}-Cm_{1}\theta +Cm_{N}\theta _{1}-Cm_{N}\theta +C\theta _{1}-C\theta
Reorder the terms.
\left(m_{1}\theta -m_{1}\theta _{1}\right)C_{x}=Cm_{1}\theta _{1}-Cm_{1}\theta +Cm_{N}\theta _{1}-Cm_{N}\theta +C\theta _{1}-C\theta
Combine all terms containing C_{x}.
\frac{\left(m_{1}\theta -m_{1}\theta _{1}\right)C_{x}}{m_{1}\theta -m_{1}\theta _{1}}=\frac{C\left(\theta _{1}-\theta \right)\left(m_{1}+m_{N}+1\right)}{m_{1}\theta -m_{1}\theta _{1}}
Divide both sides by m_{1}\theta -m_{1}\theta _{1}.
C_{x}=\frac{C\left(\theta _{1}-\theta \right)\left(m_{1}+m_{N}+1\right)}{m_{1}\theta -m_{1}\theta _{1}}
Dividing by m_{1}\theta -m_{1}\theta _{1} undoes the multiplication by m_{1}\theta -m_{1}\theta _{1}.
C_{x}=-\frac{C\left(m_{1}+m_{N}+1\right)}{m_{1}}
Divide C\left(1+m_{1}+m_{N}\right)\left(-\theta +\theta _{1}\right) by m_{1}\theta -m_{1}\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\left(\theta -\theta _{1}\right)+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C_{x} by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=0
Use the distributive property to multiply m_{N}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}-m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-m_{1}C_{x}\theta
Subtract m_{1}C_{x}\theta from both sides. Anything subtracted from zero gives its negation.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-m_{1}C_{x}\theta +m_{1}C_{x}\theta _{1}
Add m_{1}C_{x}\theta _{1} to both sides.
Cm_{1}\theta -Cm_{1}\theta _{1}+Cm_{N}\theta -Cm_{N}\theta _{1}+C\theta -C\theta _{1}=C_{x}m_{1}\theta _{1}-C_{x}m_{1}\theta
Reorder the terms.
\left(m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}\right)C=C_{x}m_{1}\theta _{1}-C_{x}m_{1}\theta
Combine all terms containing C.
\frac{\left(m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}\right)C}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}=\frac{C_{x}m_{1}\left(\theta _{1}-\theta \right)}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}
Divide both sides by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C=\frac{C_{x}m_{1}\left(\theta _{1}-\theta \right)}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}
Dividing by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1} undoes the multiplication by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C=-\frac{C_{x}m_{1}}{m_{1}+m_{N}+1}
Divide m_{1}C_{x}\left(\theta _{1}-\theta \right) by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\left(\theta -\theta _{1}\right)+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C_{x} by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=0
Use the distributive property to multiply m_{N}C by \theta -\theta _{1}.
-C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta
Subtract C\theta from both sides. Anything subtracted from zero gives its negation.
m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}
Add C\theta _{1} to both sides.
-m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta
Subtract m_{1}C\theta from both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}
Add m_{1}C\theta _{1} to both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}-m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}-m_{N}C\theta
Subtract m_{N}C\theta from both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}-m_{N}C\theta +m_{N}C\theta _{1}
Add m_{N}C\theta _{1} to both sides.
C_{x}m_{1}\theta -C_{x}m_{1}\theta _{1}=Cm_{1}\theta _{1}-Cm_{1}\theta +Cm_{N}\theta _{1}-Cm_{N}\theta +C\theta _{1}-C\theta
Reorder the terms.
\left(m_{1}\theta -m_{1}\theta _{1}\right)C_{x}=Cm_{1}\theta _{1}-Cm_{1}\theta +Cm_{N}\theta _{1}-Cm_{N}\theta +C\theta _{1}-C\theta
Combine all terms containing C_{x}.
\frac{\left(m_{1}\theta -m_{1}\theta _{1}\right)C_{x}}{m_{1}\theta -m_{1}\theta _{1}}=\frac{C\left(\theta _{1}-\theta \right)\left(m_{1}+m_{N}+1\right)}{m_{1}\theta -m_{1}\theta _{1}}
Divide both sides by m_{1}\theta -m_{1}\theta _{1}.
C_{x}=\frac{C\left(\theta _{1}-\theta \right)\left(m_{1}+m_{N}+1\right)}{m_{1}\theta -m_{1}\theta _{1}}
Dividing by m_{1}\theta -m_{1}\theta _{1} undoes the multiplication by m_{1}\theta -m_{1}\theta _{1}.
C_{x}=-\frac{C\left(m_{1}+m_{N}+1\right)}{m_{1}}
Divide C\left(1+m_{1}+m_{N}\right)\left(-\theta +\theta _{1}\right) by m_{1}\theta -m_{1}\theta _{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}