Skip to main content
Solve for C (complex solution)
Tick mark Image
Solve for C_x (complex solution)
Tick mark Image
Solve for C
Tick mark Image
Solve for C_x
Tick mark Image
Graph

Similar Problems from Web Search

Share

C\theta -C\theta _{1}+m_{1}C\left(\theta -\theta _{1}\right)+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C_{x} by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=0
Use the distributive property to multiply m_{N}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}-m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-m_{1}C_{x}\theta
Subtract m_{1}C_{x}\theta from both sides. Anything subtracted from zero gives its negation.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-m_{1}C_{x}\theta +m_{1}C_{x}\theta _{1}
Add m_{1}C_{x}\theta _{1} to both sides.
Cm_{1}\theta -Cm_{1}\theta _{1}+Cm_{N}\theta -Cm_{N}\theta _{1}+C\theta -C\theta _{1}=C_{x}m_{1}\theta _{1}-C_{x}m_{1}\theta
Reorder the terms.
\left(m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}\right)C=C_{x}m_{1}\theta _{1}-C_{x}m_{1}\theta
Combine all terms containing C.
\frac{\left(m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}\right)C}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}=\frac{C_{x}m_{1}\left(\theta _{1}-\theta \right)}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}
Divide both sides by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C=\frac{C_{x}m_{1}\left(\theta _{1}-\theta \right)}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}
Dividing by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1} undoes the multiplication by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C=-\frac{C_{x}m_{1}}{m_{1}+m_{N}+1}
Divide m_{1}C_{x}\left(\theta _{1}-\theta \right) by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\left(\theta -\theta _{1}\right)+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C_{x} by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=0
Use the distributive property to multiply m_{N}C by \theta -\theta _{1}.
-C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta
Subtract C\theta from both sides. Anything subtracted from zero gives its negation.
m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}
Add C\theta _{1} to both sides.
-m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta
Subtract m_{1}C\theta from both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}
Add m_{1}C\theta _{1} to both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}-m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}-m_{N}C\theta
Subtract m_{N}C\theta from both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}-m_{N}C\theta +m_{N}C\theta _{1}
Add m_{N}C\theta _{1} to both sides.
C_{x}m_{1}\theta -C_{x}m_{1}\theta _{1}=Cm_{1}\theta _{1}-Cm_{1}\theta +Cm_{N}\theta _{1}-Cm_{N}\theta +C\theta _{1}-C\theta
Reorder the terms.
\left(m_{1}\theta -m_{1}\theta _{1}\right)C_{x}=Cm_{1}\theta _{1}-Cm_{1}\theta +Cm_{N}\theta _{1}-Cm_{N}\theta +C\theta _{1}-C\theta
Combine all terms containing C_{x}.
\frac{\left(m_{1}\theta -m_{1}\theta _{1}\right)C_{x}}{m_{1}\theta -m_{1}\theta _{1}}=\frac{C\left(\theta _{1}-\theta \right)\left(m_{1}+m_{N}+1\right)}{m_{1}\theta -m_{1}\theta _{1}}
Divide both sides by m_{1}\theta -m_{1}\theta _{1}.
C_{x}=\frac{C\left(\theta _{1}-\theta \right)\left(m_{1}+m_{N}+1\right)}{m_{1}\theta -m_{1}\theta _{1}}
Dividing by m_{1}\theta -m_{1}\theta _{1} undoes the multiplication by m_{1}\theta -m_{1}\theta _{1}.
C_{x}=-\frac{C\left(m_{1}+m_{N}+1\right)}{m_{1}}
Divide C\left(1+m_{1}+m_{N}\right)\left(-\theta +\theta _{1}\right) by m_{1}\theta -m_{1}\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\left(\theta -\theta _{1}\right)+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C_{x} by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=0
Use the distributive property to multiply m_{N}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}-m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-m_{1}C_{x}\theta
Subtract m_{1}C_{x}\theta from both sides. Anything subtracted from zero gives its negation.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-m_{1}C_{x}\theta +m_{1}C_{x}\theta _{1}
Add m_{1}C_{x}\theta _{1} to both sides.
Cm_{1}\theta -Cm_{1}\theta _{1}+Cm_{N}\theta -Cm_{N}\theta _{1}+C\theta -C\theta _{1}=C_{x}m_{1}\theta _{1}-C_{x}m_{1}\theta
Reorder the terms.
\left(m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}\right)C=C_{x}m_{1}\theta _{1}-C_{x}m_{1}\theta
Combine all terms containing C.
\frac{\left(m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}\right)C}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}=\frac{C_{x}m_{1}\left(\theta _{1}-\theta \right)}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}
Divide both sides by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C=\frac{C_{x}m_{1}\left(\theta _{1}-\theta \right)}{m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}}
Dividing by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1} undoes the multiplication by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C=-\frac{C_{x}m_{1}}{m_{1}+m_{N}+1}
Divide m_{1}C_{x}\left(\theta _{1}-\theta \right) by m_{1}\theta -m_{1}\theta _{1}+m_{N}\theta -m_{N}\theta _{1}+\theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\left(\theta -\theta _{1}\right)+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\left(\theta -\theta _{1}\right)+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\left(\theta -\theta _{1}\right)=0
Use the distributive property to multiply m_{1}C_{x} by \theta -\theta _{1}.
C\theta -C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=0
Use the distributive property to multiply m_{N}C by \theta -\theta _{1}.
-C\theta _{1}+m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta
Subtract C\theta from both sides. Anything subtracted from zero gives its negation.
m_{1}C\theta -m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}
Add C\theta _{1} to both sides.
-m_{1}C\theta _{1}+m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta
Subtract m_{1}C\theta from both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}+m_{N}C\theta -m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}
Add m_{1}C\theta _{1} to both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}-m_{N}C\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}-m_{N}C\theta
Subtract m_{N}C\theta from both sides.
m_{1}C_{x}\theta -m_{1}C_{x}\theta _{1}=-C\theta +C\theta _{1}-m_{1}C\theta +m_{1}C\theta _{1}-m_{N}C\theta +m_{N}C\theta _{1}
Add m_{N}C\theta _{1} to both sides.
C_{x}m_{1}\theta -C_{x}m_{1}\theta _{1}=Cm_{1}\theta _{1}-Cm_{1}\theta +Cm_{N}\theta _{1}-Cm_{N}\theta +C\theta _{1}-C\theta
Reorder the terms.
\left(m_{1}\theta -m_{1}\theta _{1}\right)C_{x}=Cm_{1}\theta _{1}-Cm_{1}\theta +Cm_{N}\theta _{1}-Cm_{N}\theta +C\theta _{1}-C\theta
Combine all terms containing C_{x}.
\frac{\left(m_{1}\theta -m_{1}\theta _{1}\right)C_{x}}{m_{1}\theta -m_{1}\theta _{1}}=\frac{C\left(\theta _{1}-\theta \right)\left(m_{1}+m_{N}+1\right)}{m_{1}\theta -m_{1}\theta _{1}}
Divide both sides by m_{1}\theta -m_{1}\theta _{1}.
C_{x}=\frac{C\left(\theta _{1}-\theta \right)\left(m_{1}+m_{N}+1\right)}{m_{1}\theta -m_{1}\theta _{1}}
Dividing by m_{1}\theta -m_{1}\theta _{1} undoes the multiplication by m_{1}\theta -m_{1}\theta _{1}.
C_{x}=-\frac{C\left(m_{1}+m_{N}+1\right)}{m_{1}}
Divide C\left(1+m_{1}+m_{N}\right)\left(-\theta +\theta _{1}\right) by m_{1}\theta -m_{1}\theta _{1}.