Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{BC}{Lk}\text{, }&L\neq 0\text{ and }k\neq 0\text{ and }B\neq 0\\A\in \mathrm{C}\text{, }&\left(L=0\text{ or }k=0\right)\text{ and }C=0\text{ and }B\neq 0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{BC}{Lk}\text{, }&L\neq 0\text{ and }k\neq 0\text{ and }B\neq 0\\A\in \mathrm{R}\text{, }&\left(L=0\text{ or }k=0\right)\text{ and }C=0\text{ and }B\neq 0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=\frac{ALk}{C}\text{, }&A\neq 0\text{ and }L\neq 0\text{ and }k\neq 0\text{ and }C\neq 0\\B\neq 0\text{, }&\left(A=0\text{ or }L=0\text{ or }k=0\right)\text{ and }C=0\end{matrix}\right.
Share
Copied to clipboard
CB=kLA
Multiply both sides of the equation by B.
kLA=CB
Swap sides so that all variable terms are on the left hand side.
LkA=BC
The equation is in standard form.
\frac{LkA}{Lk}=\frac{BC}{Lk}
Divide both sides by kL.
A=\frac{BC}{Lk}
Dividing by kL undoes the multiplication by kL.
CB=kLA
Multiply both sides of the equation by B.
kLA=CB
Swap sides so that all variable terms are on the left hand side.
LkA=BC
The equation is in standard form.
\frac{LkA}{Lk}=\frac{BC}{Lk}
Divide both sides by kL.
A=\frac{BC}{Lk}
Dividing by kL undoes the multiplication by kL.
CB=kLA
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by B.
CB=ALk
The equation is in standard form.
\frac{CB}{C}=\frac{ALk}{C}
Divide both sides by C.
B=\frac{ALk}{C}
Dividing by C undoes the multiplication by C.
B=\frac{ALk}{C}\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}