C = \frac { x ^ { 2 } - 2 x - 80 } { x - 10 } - ( x - 25
Solve for C
C=33
x\neq 10
Solve for x
x\neq 10
C=33\text{ and }x\neq 10
Graph
Share
Copied to clipboard
C=\frac{\left(x-10\right)\left(x+8\right)}{x-10}-\left(x-25\right)
Factor the expressions that are not already factored in \frac{x^{2}-2x-80}{x-10}.
C=x+8-\left(x-25\right)
Cancel out x-10 in both numerator and denominator.
C=x+8-x+25
To find the opposite of x-25, find the opposite of each term.
C=8+25
Combine x and -x to get 0.
C=33
Add 8 and 25 to get 33.
C\left(x-10\right)=x^{2}-2x-80-\left(x-25\right)\left(x-10\right)
Variable x cannot be equal to 10 since division by zero is not defined. Multiply both sides of the equation by x-10.
Cx-10C=x^{2}-2x-80-\left(x-25\right)\left(x-10\right)
Use the distributive property to multiply C by x-10.
Cx-10C=x^{2}-2x-80+\left(-x+25\right)\left(x-10\right)
Use the distributive property to multiply -1 by x-25.
Cx-10C=x^{2}-2x-80-x^{2}+35x-250
Use the distributive property to multiply -x+25 by x-10 and combine like terms.
Cx-10C=-2x-80+35x-250
Combine x^{2} and -x^{2} to get 0.
Cx-10C=33x-80-250
Combine -2x and 35x to get 33x.
Cx-10C=33x-330
Subtract 250 from -80 to get -330.
Cx-10C-33x=-330
Subtract 33x from both sides.
Cx-33x=-330+10C
Add 10C to both sides.
\left(C-33\right)x=-330+10C
Combine all terms containing x.
\left(C-33\right)x=10C-330
The equation is in standard form.
\frac{\left(C-33\right)x}{C-33}=\frac{10C-330}{C-33}
Divide both sides by C-33.
x=\frac{10C-330}{C-33}
Dividing by C-33 undoes the multiplication by C-33.
x=10
Divide -330+10C by C-33.
x\in \emptyset
Variable x cannot be equal to 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}