Solve for p
p=\frac{50000}{C+6500}
C\neq -6500
Solve for C
C=-6500+\frac{50000}{p}
p\neq 0
Share
Copied to clipboard
Cp=50000+p\left(-6500\right)
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p.
Cp-p\left(-6500\right)=50000
Subtract p\left(-6500\right) from both sides.
Cp+6500p=50000
Multiply -1 and -6500 to get 6500.
\left(C+6500\right)p=50000
Combine all terms containing p.
\frac{\left(C+6500\right)p}{C+6500}=\frac{50000}{C+6500}
Divide both sides by C+6500.
p=\frac{50000}{C+6500}
Dividing by C+6500 undoes the multiplication by C+6500.
p=\frac{50000}{C+6500}\text{, }p\neq 0
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}