Solve for h (complex solution)
\left\{\begin{matrix}h=y+\frac{6C}{w}\text{, }&w\neq 0\\h\in \mathrm{C}\text{, }&C=0\text{ and }w=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=y+\frac{6C}{w}\text{, }&w\neq 0\\h\in \mathrm{R}\text{, }&C=0\text{ and }w=0\end{matrix}\right.
Solve for C
C=\frac{w\left(h-y\right)}{6}
Graph
Share
Copied to clipboard
C=\frac{1}{6}wh-\frac{1}{6}yw
Use the distributive property to multiply \frac{1}{6}w by h-y.
\frac{1}{6}wh-\frac{1}{6}yw=C
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}wh=C+\frac{1}{6}yw
Add \frac{1}{6}yw to both sides.
\frac{w}{6}h=\frac{wy}{6}+C
The equation is in standard form.
\frac{6\times \frac{w}{6}h}{w}=\frac{6\left(\frac{wy}{6}+C\right)}{w}
Divide both sides by \frac{1}{6}w.
h=\frac{6\left(\frac{wy}{6}+C\right)}{w}
Dividing by \frac{1}{6}w undoes the multiplication by \frac{1}{6}w.
h=y+\frac{6C}{w}
Divide C+\frac{yw}{6} by \frac{1}{6}w.
C=\frac{1}{6}wh-\frac{1}{6}yw
Use the distributive property to multiply \frac{1}{6}w by h-y.
\frac{1}{6}wh-\frac{1}{6}yw=C
Swap sides so that all variable terms are on the left hand side.
\frac{1}{6}wh=C+\frac{1}{6}yw
Add \frac{1}{6}yw to both sides.
\frac{w}{6}h=\frac{wy}{6}+C
The equation is in standard form.
\frac{6\times \frac{w}{6}h}{w}=\frac{6\left(\frac{wy}{6}+C\right)}{w}
Divide both sides by \frac{1}{6}w.
h=\frac{6\left(\frac{wy}{6}+C\right)}{w}
Dividing by \frac{1}{6}w undoes the multiplication by \frac{1}{6}w.
h=y+\frac{6C}{w}
Divide C+\frac{yw}{6} by \frac{1}{6}w.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}