Solve for B
B=\frac{\sqrt{122}}{C}
C\neq 0
Solve for C
C=\frac{\sqrt{122}}{B}
B\neq 0
Share
Copied to clipboard
BC=\sqrt{\left(-1\right)^{2}+\left(0-11\right)^{2}}
Subtract 11 from 10 to get -1.
BC=\sqrt{1+\left(0-11\right)^{2}}
Calculate -1 to the power of 2 and get 1.
BC=\sqrt{1+\left(-11\right)^{2}}
Subtract 11 from 0 to get -11.
BC=\sqrt{1+121}
Calculate -11 to the power of 2 and get 121.
BC=\sqrt{122}
Add 1 and 121 to get 122.
CB=\sqrt{122}
The equation is in standard form.
\frac{CB}{C}=\frac{\sqrt{122}}{C}
Divide both sides by C.
B=\frac{\sqrt{122}}{C}
Dividing by C undoes the multiplication by C.
BC=\sqrt{\left(-1\right)^{2}+\left(0-11\right)^{2}}
Subtract 11 from 10 to get -1.
BC=\sqrt{1+\left(0-11\right)^{2}}
Calculate -1 to the power of 2 and get 1.
BC=\sqrt{1+\left(-11\right)^{2}}
Subtract 11 from 0 to get -11.
BC=\sqrt{1+121}
Calculate -11 to the power of 2 and get 121.
BC=\sqrt{122}
Add 1 and 121 to get 122.
\frac{BC}{B}=\frac{\sqrt{122}}{B}
Divide both sides by B.
C=\frac{\sqrt{122}}{B}
Dividing by B undoes the multiplication by B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}