Solve for x
x=-\frac{7\left(513-B\right)}{2B-1025}
B\neq \frac{1025}{2}
Solve for B
B=-\frac{3591-1025x}{2x-7}
x\neq \frac{7}{2}
Graph
Share
Copied to clipboard
B\left(2x-7\right)=\left(2x-7\right)\times 513-x
Variable x cannot be equal to \frac{7}{2} since division by zero is not defined. Multiply both sides of the equation by 2x-7.
2Bx-7B=\left(2x-7\right)\times 513-x
Use the distributive property to multiply B by 2x-7.
2Bx-7B=1026x-3591-x
Use the distributive property to multiply 2x-7 by 513.
2Bx-7B-1026x=-3591-x
Subtract 1026x from both sides.
2Bx-7B-1026x+x=-3591
Add x to both sides.
2Bx-7B-1025x=-3591
Combine -1026x and x to get -1025x.
2Bx-1025x=-3591+7B
Add 7B to both sides.
\left(2B-1025\right)x=-3591+7B
Combine all terms containing x.
\left(2B-1025\right)x=7B-3591
The equation is in standard form.
\frac{\left(2B-1025\right)x}{2B-1025}=\frac{7B-3591}{2B-1025}
Divide both sides by -1025+2B.
x=\frac{7B-3591}{2B-1025}
Dividing by -1025+2B undoes the multiplication by -1025+2B.
x=\frac{7\left(B-513\right)}{2B-1025}
Divide -3591+7B by -1025+2B.
x=\frac{7\left(B-513\right)}{2B-1025}\text{, }x\neq \frac{7}{2}
Variable x cannot be equal to \frac{7}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}