Solve for B
B=\frac{7a-13}{12}
Solve for a
a=\frac{12B+13}{7}
Share
Copied to clipboard
B=\frac{4\left(a-1\right)}{12}+\frac{3\left(a+1\right)}{12}-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 4 is 12. Multiply \frac{a-1}{3} times \frac{4}{4}. Multiply \frac{a+1}{4} times \frac{3}{3}.
B=\frac{4\left(a-1\right)+3\left(a+1\right)}{12}-1
Since \frac{4\left(a-1\right)}{12} and \frac{3\left(a+1\right)}{12} have the same denominator, add them by adding their numerators.
B=\frac{4a-4+3a+3}{12}-1
Do the multiplications in 4\left(a-1\right)+3\left(a+1\right).
B=\frac{7a-1}{12}-1
Combine like terms in 4a-4+3a+3.
B=\frac{7}{12}a-\frac{1}{12}-1
Divide each term of 7a-1 by 12 to get \frac{7}{12}a-\frac{1}{12}.
B=\frac{7}{12}a-\frac{13}{12}
Subtract 1 from -\frac{1}{12} to get -\frac{13}{12}.
B=\frac{4\left(a-1\right)}{12}+\frac{3\left(a+1\right)}{12}-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 4 is 12. Multiply \frac{a-1}{3} times \frac{4}{4}. Multiply \frac{a+1}{4} times \frac{3}{3}.
B=\frac{4\left(a-1\right)+3\left(a+1\right)}{12}-1
Since \frac{4\left(a-1\right)}{12} and \frac{3\left(a+1\right)}{12} have the same denominator, add them by adding their numerators.
B=\frac{4a-4+3a+3}{12}-1
Do the multiplications in 4\left(a-1\right)+3\left(a+1\right).
B=\frac{7a-1}{12}-1
Combine like terms in 4a-4+3a+3.
B=\frac{7}{12}a-\frac{1}{12}-1
Divide each term of 7a-1 by 12 to get \frac{7}{12}a-\frac{1}{12}.
B=\frac{7}{12}a-\frac{13}{12}
Subtract 1 from -\frac{1}{12} to get -\frac{13}{12}.
\frac{7}{12}a-\frac{13}{12}=B
Swap sides so that all variable terms are on the left hand side.
\frac{7}{12}a=B+\frac{13}{12}
Add \frac{13}{12} to both sides.
\frac{\frac{7}{12}a}{\frac{7}{12}}=\frac{B+\frac{13}{12}}{\frac{7}{12}}
Divide both sides of the equation by \frac{7}{12}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{B+\frac{13}{12}}{\frac{7}{12}}
Dividing by \frac{7}{12} undoes the multiplication by \frac{7}{12}.
a=\frac{12B+13}{7}
Divide B+\frac{13}{12} by \frac{7}{12} by multiplying B+\frac{13}{12} by the reciprocal of \frac{7}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}