Solve for I
\left\{\begin{matrix}I=\frac{2Br^{2}}{a\mu _{0}\sin(\alpha )}\text{, }&\mu _{0}\neq 0\text{ and }a\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}\text{ and }r\neq 0\\I\in \mathrm{R}\text{, }&\left(\exists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}\text{ or }\left(r\neq 0\text{ and }\left(a=0\text{ or }\mu _{0}=0\right)\right)\right)\text{ and }B=0\text{ and }r\neq 0\end{matrix}\right.
Solve for B
B=\frac{Ia\mu _{0}\sin(\alpha )}{2r^{2}}
r\neq 0
Share
Copied to clipboard
Br^{2}=\frac{1}{4}r^{2}\pi ^{-1}\mu _{0}\times \frac{I}{r^{2}}\sin(\alpha )\times 2\pi a
Multiply both sides of the equation by r^{2}.
Br^{2}=\frac{1}{2}r^{2}\pi ^{-1}\mu _{0}\times \frac{I}{r^{2}}\sin(\alpha )\pi a
Multiply \frac{1}{4} and 2 to get \frac{1}{2}.
Br^{2}=\frac{I}{2r^{2}}r^{2}\pi ^{-1}\mu _{0}\sin(\alpha )\pi a
Multiply \frac{1}{2} times \frac{I}{r^{2}} by multiplying numerator times numerator and denominator times denominator.
Br^{2}=\frac{I\sin(\alpha )}{2r^{2}}r^{2}\pi ^{-1}\mu _{0}\pi a
Express \frac{I}{2r^{2}}\sin(\alpha ) as a single fraction.
Br^{2}=\frac{I\sin(\alpha )\pi }{2r^{2}}r^{2}\pi ^{-1}\mu _{0}a
Express \frac{I\sin(\alpha )}{2r^{2}}\pi as a single fraction.
Br^{2}=\frac{I\sin(\alpha )\pi a}{2r^{2}}r^{2}\pi ^{-1}\mu _{0}
Express \frac{I\sin(\alpha )\pi }{2r^{2}}a as a single fraction.
Br^{2}=\frac{I\sin(\alpha )\pi ar^{2}}{2r^{2}}\pi ^{-1}\mu _{0}
Express \frac{I\sin(\alpha )\pi a}{2r^{2}}r^{2} as a single fraction.
Br^{2}=\frac{\pi Ia\sin(\alpha )}{2}\pi ^{-1}\mu _{0}
Cancel out r^{2} in both numerator and denominator.
Br^{2}=\frac{\pi Ia\sin(\alpha )\pi ^{-1}}{2}\mu _{0}
Express \frac{\pi Ia\sin(\alpha )}{2}\pi ^{-1} as a single fraction.
Br^{2}=\frac{\pi Ia\sin(\alpha )\pi ^{-1}\mu _{0}}{2}
Express \frac{\pi Ia\sin(\alpha )\pi ^{-1}}{2}\mu _{0} as a single fraction.
\frac{\pi Ia\sin(\alpha )\pi ^{-1}\mu _{0}}{2}=Br^{2}
Swap sides so that all variable terms are on the left hand side.
\pi Ia\sin(\alpha )\pi ^{-1}\mu _{0}=2Br^{2}
Multiply both sides of the equation by 2.
a\mu _{0}\sin(\alpha )I=2Br^{2}
The equation is in standard form.
\frac{a\mu _{0}\sin(\alpha )I}{a\mu _{0}\sin(\alpha )}=\frac{2Br^{2}}{a\mu _{0}\sin(\alpha )}
Divide both sides by a\sin(\alpha )\mu _{0}.
I=\frac{2Br^{2}}{a\mu _{0}\sin(\alpha )}
Dividing by a\sin(\alpha )\mu _{0} undoes the multiplication by a\sin(\alpha )\mu _{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}