Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{s^{2}+144}{p^{2}}\text{, }&p\neq 0\\A\in \mathrm{C}\text{, }&\left(s=-12i\text{ or }s=12i\right)\text{ and }p=0\end{matrix}\right.
Solve for A
A=\frac{s^{2}+144}{p^{2}}
p\neq 0
Solve for p (complex solution)
\left\{\begin{matrix}p=-A^{-\frac{1}{2}}\sqrt{s^{2}+144}\text{; }p=A^{-\frac{1}{2}}\sqrt{s^{2}+144}\text{, }&A\neq 0\\p\in \mathrm{C}\text{, }&\left(s=-12i\text{ or }s=12i\right)\text{ and }A=0\end{matrix}\right.
Solve for p
p=\sqrt{\frac{s^{2}+144}{A}}
p=-\sqrt{\frac{s^{2}+144}{A}}\text{, }A>0
Share
Copied to clipboard
Ap^{2}=s^{2}+144
Calculate 12 to the power of 2 and get 144.
p^{2}A=s^{2}+144
The equation is in standard form.
\frac{p^{2}A}{p^{2}}=\frac{s^{2}+144}{p^{2}}
Divide both sides by p^{2}.
A=\frac{s^{2}+144}{p^{2}}
Dividing by p^{2} undoes the multiplication by p^{2}.
Ap^{2}=s^{2}+144
Calculate 12 to the power of 2 and get 144.
p^{2}A=s^{2}+144
The equation is in standard form.
\frac{p^{2}A}{p^{2}}=\frac{s^{2}+144}{p^{2}}
Divide both sides by p^{2}.
A=\frac{s^{2}+144}{p^{2}}
Dividing by p^{2} undoes the multiplication by p^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}