Solve for N
N=\frac{3A_{N}}{5-A_{N}}
A_{N}\neq 5
Solve for A_N
A_{N}=\frac{5N}{N+3}
N\neq -3
Share
Copied to clipboard
A_{N}\left(N+3\right)=5N
Variable N cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by N+3.
A_{N}N+3A_{N}=5N
Use the distributive property to multiply A_{N} by N+3.
A_{N}N+3A_{N}-5N=0
Subtract 5N from both sides.
A_{N}N-5N=-3A_{N}
Subtract 3A_{N} from both sides. Anything subtracted from zero gives its negation.
\left(A_{N}-5\right)N=-3A_{N}
Combine all terms containing N.
\frac{\left(A_{N}-5\right)N}{A_{N}-5}=-\frac{3A_{N}}{A_{N}-5}
Divide both sides by A_{N}-5.
N=-\frac{3A_{N}}{A_{N}-5}
Dividing by A_{N}-5 undoes the multiplication by A_{N}-5.
N=-\frac{3A_{N}}{A_{N}-5}\text{, }N\neq -3
Variable N cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}