Solve for A_2
A_{2} = \frac{146269}{32} = 4570\frac{29}{32} = 4570.90625
Assign A_2
A_{2}≔\frac{146269}{32}
Share
Copied to clipboard
A_{2}=\frac{1165}{32}\times 121+\frac{4275}{100}+123
Reduce the fraction \frac{5825}{160} to lowest terms by extracting and canceling out 5.
A_{2}=\frac{1165\times 121}{32}+\frac{4275}{100}+123
Express \frac{1165}{32}\times 121 as a single fraction.
A_{2}=\frac{140965}{32}+\frac{4275}{100}+123
Multiply 1165 and 121 to get 140965.
A_{2}=\frac{140965}{32}+\frac{171}{4}+123
Reduce the fraction \frac{4275}{100} to lowest terms by extracting and canceling out 25.
A_{2}=\frac{140965}{32}+\frac{1368}{32}+123
Least common multiple of 32 and 4 is 32. Convert \frac{140965}{32} and \frac{171}{4} to fractions with denominator 32.
A_{2}=\frac{140965+1368}{32}+123
Since \frac{140965}{32} and \frac{1368}{32} have the same denominator, add them by adding their numerators.
A_{2}=\frac{142333}{32}+123
Add 140965 and 1368 to get 142333.
A_{2}=\frac{142333}{32}+\frac{3936}{32}
Convert 123 to fraction \frac{3936}{32}.
A_{2}=\frac{142333+3936}{32}
Since \frac{142333}{32} and \frac{3936}{32} have the same denominator, add them by adding their numerators.
A_{2}=\frac{146269}{32}
Add 142333 and 3936 to get 146269.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}