Solve for A (complex solution)
\left\{\begin{matrix}A=-\frac{e\left(bdu-1\right)}{BCd}\text{, }&d\neq 0\text{ and }C\neq 0\text{ and }B\neq 0\\A\in \mathrm{C}\text{, }&d=\frac{1}{bu}\text{ and }b\neq 0\text{ and }u\neq 0\text{ and }\left(C=0\text{ or }B=0\right)\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=-\frac{e\left(bdu-1\right)}{ACd}\text{, }&d\neq 0\text{ and }C\neq 0\text{ and }A\neq 0\\B\in \mathrm{C}\text{, }&d=\frac{1}{bu}\text{ and }b\neq 0\text{ and }u\neq 0\text{ and }\left(C=0\text{ or }A=0\right)\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=-\frac{e\left(bdu-1\right)}{BCd}\text{, }&d\neq 0\text{ and }C\neq 0\text{ and }B\neq 0\\A\in \mathrm{R}\text{, }&\left(b=\frac{1}{du}\text{ and }u\neq 0\text{ and }d\neq 0\text{ and }C=0\right)\text{ or }\left(d=\frac{1}{bu}\text{ and }u\neq 0\text{ and }B=0\text{ and }C\neq 0\text{ and }b\neq 0\right)\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{e\left(bdu-1\right)}{ACd}\text{, }&d\neq 0\text{ and }C\neq 0\text{ and }A\neq 0\\B\in \mathrm{R}\text{, }&\left(b=\frac{1}{du}\text{ and }u\neq 0\text{ and }d\neq 0\text{ and }C=0\right)\text{ or }\left(d=\frac{1}{bu}\text{ and }u\neq 0\text{ and }A=0\text{ and }C\neq 0\text{ and }b\neq 0\right)\end{matrix}\right.
Share
Copied to clipboard
ABCd=e-ubed
Subtract ubed from both sides.
ABCd=-ebdu+e
Reorder the terms.
BCdA=e-ebdu
The equation is in standard form.
\frac{BCdA}{BCd}=\frac{e-ebdu}{BCd}
Divide both sides by BCd.
A=\frac{e-ebdu}{BCd}
Dividing by BCd undoes the multiplication by BCd.
A=\frac{e\left(1-bdu\right)}{BCd}
Divide -ebdu+e by BCd.
ABCd=e-ubed
Subtract ubed from both sides.
ABCd=-ebdu+e
Reorder the terms.
ACdB=e-ebdu
The equation is in standard form.
\frac{ACdB}{ACd}=\frac{e-ebdu}{ACd}
Divide both sides by ACd.
B=\frac{e-ebdu}{ACd}
Dividing by ACd undoes the multiplication by ACd.
B=\frac{e\left(1-bdu\right)}{ACd}
Divide -ebdu+e by ACd.
ABCd=e-ubed
Subtract ubed from both sides.
ABCd=-ebdu+e
Reorder the terms.
BCdA=e-ebdu
The equation is in standard form.
\frac{BCdA}{BCd}=\frac{e-ebdu}{BCd}
Divide both sides by BCd.
A=\frac{e-ebdu}{BCd}
Dividing by BCd undoes the multiplication by BCd.
A=\frac{e\left(1-bdu\right)}{BCd}
Divide -ebdu+e by BCd.
ABCd=e-ubed
Subtract ubed from both sides.
ABCd=-ebdu+e
Reorder the terms.
ACdB=e-ebdu
The equation is in standard form.
\frac{ACdB}{ACd}=\frac{e-ebdu}{ACd}
Divide both sides by ACd.
B=\frac{e-ebdu}{ACd}
Dividing by ACd undoes the multiplication by ACd.
B=\frac{e\left(1-bdu\right)}{ACd}
Divide -ebdu+e by ACd.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}