Solve for A
\left\{\begin{matrix}A=-\frac{CD}{B-C+D}\text{, }&B\neq C-D\\A\in \mathrm{R}\text{, }&\left(C=0\text{ and }B=-D\right)\text{ or }\left(D=0\text{ and }B=C\right)\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{CD}{A}+C-D\text{, }&A\neq 0\\B\in \mathrm{R}\text{, }&A=0\text{ and }\left(D=0\text{ or }C=0\right)\end{matrix}\right.
Share
Copied to clipboard
AB+BC+CD+DA-AC=BC
Subtract AC from both sides.
AB+CD+DA-AC=BC-BC
Subtract BC from both sides.
AB+CD+DA-AC=0
Combine BC and -BC to get 0.
AB+DA-AC=-CD
Subtract CD from both sides. Anything subtracted from zero gives its negation.
AB-AC+AD=-CD
Reorder the terms.
\left(B-C+D\right)A=-CD
Combine all terms containing A.
\frac{\left(B-C+D\right)A}{B-C+D}=-\frac{CD}{B-C+D}
Divide both sides by B-C+D.
A=-\frac{CD}{B-C+D}
Dividing by B-C+D undoes the multiplication by B-C+D.
AB+BC+CD+DA-BC=AC
Subtract BC from both sides.
AB+CD+DA=AC
Combine BC and -BC to get 0.
AB+DA=AC-CD
Subtract CD from both sides.
AB=AC-CD-DA
Subtract DA from both sides.
AB=AC-AD-CD
The equation is in standard form.
\frac{AB}{A}=\frac{AC-AD-CD}{A}
Divide both sides by A.
B=\frac{AC-AD-CD}{A}
Dividing by A undoes the multiplication by A.
B=-\frac{CD}{A}+C-D
Divide AC-CD-DA by A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}