Solve for A
A=-6\sqrt{3}i\approx -0-10.392304845i
A=6\sqrt{3}i\approx 10.392304845i
Share
Copied to clipboard
4A^{2}=A^{2}-324
Multiply both sides of the equation by 4.
4A^{2}-A^{2}=-324
Subtract A^{2} from both sides.
3A^{2}=-324
Combine 4A^{2} and -A^{2} to get 3A^{2}.
A^{2}=\frac{-324}{3}
Divide both sides by 3.
A^{2}=-108
Divide -324 by 3 to get -108.
A=6\sqrt{3}i A=-6\sqrt{3}i
The equation is now solved.
4A^{2}=A^{2}-324
Multiply both sides of the equation by 4.
4A^{2}-A^{2}=-324
Subtract A^{2} from both sides.
3A^{2}=-324
Combine 4A^{2} and -A^{2} to get 3A^{2}.
3A^{2}+324=0
Add 324 to both sides.
A=\frac{0±\sqrt{0^{2}-4\times 3\times 324}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and 324 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{0±\sqrt{-4\times 3\times 324}}{2\times 3}
Square 0.
A=\frac{0±\sqrt{-12\times 324}}{2\times 3}
Multiply -4 times 3.
A=\frac{0±\sqrt{-3888}}{2\times 3}
Multiply -12 times 324.
A=\frac{0±36\sqrt{3}i}{2\times 3}
Take the square root of -3888.
A=\frac{0±36\sqrt{3}i}{6}
Multiply 2 times 3.
A=6\sqrt{3}i
Now solve the equation A=\frac{0±36\sqrt{3}i}{6} when ± is plus.
A=-6\sqrt{3}i
Now solve the equation A=\frac{0±36\sqrt{3}i}{6} when ± is minus.
A=6\sqrt{3}i A=-6\sqrt{3}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}