Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{x^{2}+2x-A+1}{2\left(x+1\right)}\text{, }&x\neq -1\\m\in \mathrm{C}\text{, }&A=0\text{ and }x=-1\end{matrix}\right.
Solve for A
A=\left(x+1\right)\left(x-2m+1\right)
Solve for m
\left\{\begin{matrix}m=\frac{x^{2}+2x-A+1}{2\left(x+1\right)}\text{, }&x\neq -1\\m\in \mathrm{R}\text{, }&A=0\text{ and }x=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-2\left(m-1\right)x-2m+1=A
Swap sides so that all variable terms are on the left hand side.
x^{2}-2\left(m-1\right)x-2m=A-1
Subtract 1 from both sides.
x^{2}+\left(-2m+2\right)x-2m=A-1
Use the distributive property to multiply -2 by m-1.
x^{2}-2mx+2x-2m=A-1
Use the distributive property to multiply -2m+2 by x.
-2mx+2x-2m=A-1-x^{2}
Subtract x^{2} from both sides.
-2mx-2m=A-1-x^{2}-2x
Subtract 2x from both sides.
\left(-2x-2\right)m=A-1-x^{2}-2x
Combine all terms containing m.
\left(-2x-2\right)m=-x^{2}-2x+A-1
The equation is in standard form.
\frac{\left(-2x-2\right)m}{-2x-2}=\frac{-\left(x+1\right)^{2}+A}{-2x-2}
Divide both sides by -2x-2.
m=\frac{-\left(x+1\right)^{2}+A}{-2x-2}
Dividing by -2x-2 undoes the multiplication by -2x-2.
m=-\frac{-x^{2}-2x+A-1}{2\left(x+1\right)}
Divide A-\left(x+1\right)^{2} by -2x-2.
A=x^{2}-2\left(m-1\right)x-2m+1
Multiply -1 and 2 to get -2.
A=x^{2}+\left(-2m+2\right)x-2m+1
Use the distributive property to multiply -2 by m-1.
A=x^{2}-2mx+2x-2m+1
Use the distributive property to multiply -2m+2 by x.
x^{2}-2\left(m-1\right)x-2m+1=A
Swap sides so that all variable terms are on the left hand side.
x^{2}-2\left(m-1\right)x-2m=A-1
Subtract 1 from both sides.
x^{2}+\left(-2m+2\right)x-2m=A-1
Use the distributive property to multiply -2 by m-1.
x^{2}-2mx+2x-2m=A-1
Use the distributive property to multiply -2m+2 by x.
-2mx+2x-2m=A-1-x^{2}
Subtract x^{2} from both sides.
-2mx-2m=A-1-x^{2}-2x
Subtract 2x from both sides.
\left(-2x-2\right)m=A-1-x^{2}-2x
Combine all terms containing m.
\left(-2x-2\right)m=-x^{2}-2x+A-1
The equation is in standard form.
\frac{\left(-2x-2\right)m}{-2x-2}=\frac{-\left(x+1\right)^{2}+A}{-2x-2}
Divide both sides by -2x-2.
m=\frac{-\left(x+1\right)^{2}+A}{-2x-2}
Dividing by -2x-2 undoes the multiplication by -2x-2.
m=-\frac{-x^{2}-2x+A-1}{2\left(x+1\right)}
Divide A-\left(x+1\right)^{2} by -2x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}