Skip to main content
Solve for A
Tick mark Image
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

A=p\left(1+\frac{1}{100}i\right)^{2}
Divide i by 100 to get \frac{1}{100}i.
A=p\left(\frac{9999}{10000}+\frac{1}{50}i\right)
Calculate 1+\frac{1}{100}i to the power of 2 and get \frac{9999}{10000}+\frac{1}{50}i.
A=p\left(1+\frac{1}{100}i\right)^{2}
Divide i by 100 to get \frac{1}{100}i.
A=p\left(\frac{9999}{10000}+\frac{1}{50}i\right)
Calculate 1+\frac{1}{100}i to the power of 2 and get \frac{9999}{10000}+\frac{1}{50}i.
p\left(\frac{9999}{10000}+\frac{1}{50}i\right)=A
Swap sides so that all variable terms are on the left hand side.
\left(\frac{9999}{10000}+\frac{1}{50}i\right)p=A
The equation is in standard form.
\frac{\left(\frac{9999}{10000}+\frac{1}{50}i\right)p}{\frac{9999}{10000}+\frac{1}{50}i}=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Divide both sides by \frac{9999}{10000}+\frac{1}{50}i.
p=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Dividing by \frac{9999}{10000}+\frac{1}{50}i undoes the multiplication by \frac{9999}{10000}+\frac{1}{50}i.
p=\left(\frac{99990000}{100020001}-\frac{2000000}{100020001}i\right)A
Divide A by \frac{9999}{10000}+\frac{1}{50}i.