Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{2bc-A}{2\left(b+c\right)}\text{, }&b\neq -c\\a\in \mathrm{C}\text{, }&A=-2b^{2}\text{ and }c=-b\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{2bc-A}{2\left(b+c\right)}\text{, }&b\neq -c\\a\in \mathrm{R}\text{, }&A=-2b^{2}\text{ and }c=-b\end{matrix}\right.
Solve for A
A=2\left(ab+ac+bc\right)
Share
Copied to clipboard
A=2ab+2ac+2bc
Use the distributive property to multiply 2 by ab+ac+bc.
2ab+2ac+2bc=A
Swap sides so that all variable terms are on the left hand side.
2ab+2ac=A-2bc
Subtract 2bc from both sides.
\left(2b+2c\right)a=A-2bc
Combine all terms containing a.
\frac{\left(2b+2c\right)a}{2b+2c}=\frac{A-2bc}{2b+2c}
Divide both sides by 2b+2c.
a=\frac{A-2bc}{2b+2c}
Dividing by 2b+2c undoes the multiplication by 2b+2c.
a=\frac{A-2bc}{2\left(b+c\right)}
Divide A-2cb by 2b+2c.
A=2ab+2ac+2bc
Use the distributive property to multiply 2 by ab+ac+bc.
2ab+2ac+2bc=A
Swap sides so that all variable terms are on the left hand side.
2ab+2ac=A-2bc
Subtract 2bc from both sides.
\left(2b+2c\right)a=A-2bc
Combine all terms containing a.
\frac{\left(2b+2c\right)a}{2b+2c}=\frac{A-2bc}{2b+2c}
Divide both sides by 2b+2c.
a=\frac{A-2bc}{2b+2c}
Dividing by 2b+2c undoes the multiplication by 2b+2c.
a=\frac{A-2bc}{2\left(b+c\right)}
Divide A-2cb by 2b+2c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}