Solve for B (complex solution)
\left\{\begin{matrix}B=-\frac{A}{5\left(x+2\right)}\text{, }&x\neq -2\\B\in \mathrm{C}\text{, }&A=0\text{ and }x=-2\end{matrix}\right.
Solve for A
A=-5B\left(x+2\right)
Solve for B
\left\{\begin{matrix}B=-\frac{A}{5\left(x+2\right)}\text{, }&x\neq -2\\B\in \mathrm{R}\text{, }&A=0\text{ and }x=-2\end{matrix}\right.
Graph
Share
Copied to clipboard
A=\left(-5x-10\right)B
Use the distributive property to multiply -5 by x+2.
A=-5xB-10B
Use the distributive property to multiply -5x-10 by B.
-5xB-10B=A
Swap sides so that all variable terms are on the left hand side.
\left(-5x-10\right)B=A
Combine all terms containing B.
\frac{\left(-5x-10\right)B}{-5x-10}=\frac{A}{-5x-10}
Divide both sides by -5x-10.
B=\frac{A}{-5x-10}
Dividing by -5x-10 undoes the multiplication by -5x-10.
B=-\frac{A}{5\left(x+2\right)}
Divide A by -5x-10.
A=\left(-5x-10\right)B
Use the distributive property to multiply -5 by x+2.
A=-5xB-10B
Use the distributive property to multiply -5x-10 by B.
A=\left(-5x-10\right)B
Use the distributive property to multiply -5 by x+2.
A=-5xB-10B
Use the distributive property to multiply -5x-10 by B.
-5xB-10B=A
Swap sides so that all variable terms are on the left hand side.
\left(-5x-10\right)B=A
Combine all terms containing B.
\frac{\left(-5x-10\right)B}{-5x-10}=\frac{A}{-5x-10}
Divide both sides by -5x-10.
B=\frac{A}{-5x-10}
Dividing by -5x-10 undoes the multiplication by -5x-10.
B=-\frac{A}{5\left(x+2\right)}
Divide A by -5x-10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}