Solve for A
A=\frac{13}{28}\approx 0.464285714
Assign A
A≔\frac{13}{28}
Share
Copied to clipboard
A=\frac{5}{7}-\frac{\frac{4}{3}}{\frac{15}{3}+\frac{1}{3}}
Convert 5 to fraction \frac{15}{3}.
A=\frac{5}{7}-\frac{\frac{4}{3}}{\frac{15+1}{3}}
Since \frac{15}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
A=\frac{5}{7}-\frac{\frac{4}{3}}{\frac{16}{3}}
Add 15 and 1 to get 16.
A=\frac{5}{7}-\frac{4}{3}\times \frac{3}{16}
Divide \frac{4}{3} by \frac{16}{3} by multiplying \frac{4}{3} by the reciprocal of \frac{16}{3}.
A=\frac{5}{7}-\frac{4\times 3}{3\times 16}
Multiply \frac{4}{3} times \frac{3}{16} by multiplying numerator times numerator and denominator times denominator.
A=\frac{5}{7}-\frac{4}{16}
Cancel out 3 in both numerator and denominator.
A=\frac{5}{7}-\frac{1}{4}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
A=\frac{20}{28}-\frac{7}{28}
Least common multiple of 7 and 4 is 28. Convert \frac{5}{7} and \frac{1}{4} to fractions with denominator 28.
A=\frac{20-7}{28}
Since \frac{20}{28} and \frac{7}{28} have the same denominator, subtract them by subtracting their numerators.
A=\frac{13}{28}
Subtract 7 from 20 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}