Solve for A
A=-\frac{3}{10}=-0.3
Assign A
A≔-\frac{3}{10}
Share
Copied to clipboard
A=\frac{4}{5}-\frac{2}{5}\left(\frac{12}{4}-\frac{1}{4}\right)
Convert 3 to fraction \frac{12}{4}.
A=\frac{4}{5}-\frac{2}{5}\times \frac{12-1}{4}
Since \frac{12}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
A=\frac{4}{5}-\frac{2}{5}\times \frac{11}{4}
Subtract 1 from 12 to get 11.
A=\frac{4}{5}-\frac{2\times 11}{5\times 4}
Multiply \frac{2}{5} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
A=\frac{4}{5}-\frac{22}{20}
Do the multiplications in the fraction \frac{2\times 11}{5\times 4}.
A=\frac{4}{5}-\frac{11}{10}
Reduce the fraction \frac{22}{20} to lowest terms by extracting and canceling out 2.
A=\frac{8}{10}-\frac{11}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{4}{5} and \frac{11}{10} to fractions with denominator 10.
A=\frac{8-11}{10}
Since \frac{8}{10} and \frac{11}{10} have the same denominator, subtract them by subtracting their numerators.
A=-\frac{3}{10}
Subtract 11 from 8 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}