Skip to main content
Solve for R (complex solution)
Tick mark Image
Solve for R
Tick mark Image
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

A=\frac{1}{2}WR+\frac{1}{2}WS
Use the distributive property to multiply \frac{1}{2}W by R+S.
\frac{1}{2}WR+\frac{1}{2}WS=A
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}WR=A-\frac{1}{2}WS
Subtract \frac{1}{2}WS from both sides.
\frac{W}{2}R=-\frac{SW}{2}+A
The equation is in standard form.
\frac{2\times \frac{W}{2}R}{W}=\frac{2\left(-\frac{SW}{2}+A\right)}{W}
Divide both sides by \frac{1}{2}W.
R=\frac{2\left(-\frac{SW}{2}+A\right)}{W}
Dividing by \frac{1}{2}W undoes the multiplication by \frac{1}{2}W.
R=-S+\frac{2A}{W}
Divide A-\frac{SW}{2} by \frac{1}{2}W.
A=\frac{1}{2}WR+\frac{1}{2}WS
Use the distributive property to multiply \frac{1}{2}W by R+S.
\frac{1}{2}WR+\frac{1}{2}WS=A
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}WR=A-\frac{1}{2}WS
Subtract \frac{1}{2}WS from both sides.
\frac{W}{2}R=-\frac{SW}{2}+A
The equation is in standard form.
\frac{2\times \frac{W}{2}R}{W}=\frac{2\left(-\frac{SW}{2}+A\right)}{W}
Divide both sides by \frac{1}{2}W.
R=\frac{2\left(-\frac{SW}{2}+A\right)}{W}
Dividing by \frac{1}{2}W undoes the multiplication by \frac{1}{2}W.
R=-S+\frac{2A}{W}
Divide A-\frac{SW}{2} by \frac{1}{2}W.