Solve for R (complex solution)
\left\{\begin{matrix}R=-S+\frac{2A}{W}\text{, }&W\neq 0\\R\in \mathrm{C}\text{, }&A=0\text{ and }W=0\end{matrix}\right.
Solve for R
\left\{\begin{matrix}R=-S+\frac{2A}{W}\text{, }&W\neq 0\\R\in \mathrm{R}\text{, }&A=0\text{ and }W=0\end{matrix}\right.
Solve for A
A=\frac{W\left(R+S\right)}{2}
Share
Copied to clipboard
A=\frac{1}{2}WR+\frac{1}{2}WS
Use the distributive property to multiply \frac{1}{2}W by R+S.
\frac{1}{2}WR+\frac{1}{2}WS=A
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}WR=A-\frac{1}{2}WS
Subtract \frac{1}{2}WS from both sides.
\frac{W}{2}R=-\frac{SW}{2}+A
The equation is in standard form.
\frac{2\times \frac{W}{2}R}{W}=\frac{2\left(-\frac{SW}{2}+A\right)}{W}
Divide both sides by \frac{1}{2}W.
R=\frac{2\left(-\frac{SW}{2}+A\right)}{W}
Dividing by \frac{1}{2}W undoes the multiplication by \frac{1}{2}W.
R=-S+\frac{2A}{W}
Divide A-\frac{SW}{2} by \frac{1}{2}W.
A=\frac{1}{2}WR+\frac{1}{2}WS
Use the distributive property to multiply \frac{1}{2}W by R+S.
\frac{1}{2}WR+\frac{1}{2}WS=A
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}WR=A-\frac{1}{2}WS
Subtract \frac{1}{2}WS from both sides.
\frac{W}{2}R=-\frac{SW}{2}+A
The equation is in standard form.
\frac{2\times \frac{W}{2}R}{W}=\frac{2\left(-\frac{SW}{2}+A\right)}{W}
Divide both sides by \frac{1}{2}W.
R=\frac{2\left(-\frac{SW}{2}+A\right)}{W}
Dividing by \frac{1}{2}W undoes the multiplication by \frac{1}{2}W.
R=-S+\frac{2A}{W}
Divide A-\frac{SW}{2} by \frac{1}{2}W.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}