A = \frac{ 1 }{ 2 } h \left( { b }_{ 1 } + { b }_{ 2 } \right)
Solve for b_1
\left\{\begin{matrix}b_{1}=-b_{2}+\frac{2A}{h}\text{, }&h\neq 0\\b_{1}\in \mathrm{R}\text{, }&A=0\text{ and }h=0\end{matrix}\right.
Solve for A
A=\frac{h\left(b_{1}+b_{2}\right)}{2}
Share
Copied to clipboard
A=\frac{1}{2}hb_{1}+\frac{1}{2}hb_{2}
Use the distributive property to multiply \frac{1}{2}h by b_{1}+b_{2}.
\frac{1}{2}hb_{1}+\frac{1}{2}hb_{2}=A
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}hb_{1}=A-\frac{1}{2}hb_{2}
Subtract \frac{1}{2}hb_{2} from both sides.
\frac{h}{2}b_{1}=-\frac{b_{2}h}{2}+A
The equation is in standard form.
\frac{2\times \frac{h}{2}b_{1}}{h}=\frac{2\left(-\frac{b_{2}h}{2}+A\right)}{h}
Divide both sides by \frac{1}{2}h.
b_{1}=\frac{2\left(-\frac{b_{2}h}{2}+A\right)}{h}
Dividing by \frac{1}{2}h undoes the multiplication by \frac{1}{2}h.
b_{1}=-b_{2}+\frac{2A}{h}
Divide A-\frac{b_{2}h}{2} by \frac{1}{2}h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}