Skip to main content
Solve for b_1
Tick mark Image
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

A=\frac{1}{2}hb_{1}+\frac{1}{2}hb_{2}
Use the distributive property to multiply \frac{1}{2}h by b_{1}+b_{2}.
\frac{1}{2}hb_{1}+\frac{1}{2}hb_{2}=A
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}hb_{1}=A-\frac{1}{2}hb_{2}
Subtract \frac{1}{2}hb_{2} from both sides.
\frac{h}{2}b_{1}=-\frac{b_{2}h}{2}+A
The equation is in standard form.
\frac{2\times \frac{h}{2}b_{1}}{h}=\frac{2\left(-\frac{b_{2}h}{2}+A\right)}{h}
Divide both sides by \frac{1}{2}h.
b_{1}=\frac{2\left(-\frac{b_{2}h}{2}+A\right)}{h}
Dividing by \frac{1}{2}h undoes the multiplication by \frac{1}{2}h.
b_{1}=-b_{2}+\frac{2A}{h}
Divide A-\frac{b_{2}h}{2} by \frac{1}{2}h.