Solve for A
A=\frac{B-1}{B}
B\neq 0
Solve for B
B=-\frac{1}{A-1}
A\neq 1
Share
Copied to clipboard
BA+1=B
Multiply both sides of the equation by B.
BA=B-1
Subtract 1 from both sides.
\frac{BA}{B}=\frac{B-1}{B}
Divide both sides by B.
A=\frac{B-1}{B}
Dividing by B undoes the multiplication by B.
BA+1=B
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by B.
BA+1-B=0
Subtract B from both sides.
BA-B=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(A-1\right)B=-1
Combine all terms containing B.
\frac{\left(A-1\right)B}{A-1}=-\frac{1}{A-1}
Divide both sides by A-1.
B=-\frac{1}{A-1}
Dividing by A-1 undoes the multiplication by A-1.
B=-\frac{1}{A-1}\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}