Factor
\left(4-x\right)\left(2x-1\right)
Evaluate
\left(4-x\right)\left(2x-1\right)
Graph
Share
Copied to clipboard
-2x^{2}+9x-4
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=9 ab=-2\left(-4\right)=8
Factor the expression by grouping. First, the expression needs to be rewritten as -2x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,8 2,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 8.
1+8=9 2+4=6
Calculate the sum for each pair.
a=8 b=1
The solution is the pair that gives sum 9.
\left(-2x^{2}+8x\right)+\left(x-4\right)
Rewrite -2x^{2}+9x-4 as \left(-2x^{2}+8x\right)+\left(x-4\right).
2x\left(-x+4\right)-\left(-x+4\right)
Factor out 2x in the first and -1 in the second group.
\left(-x+4\right)\left(2x-1\right)
Factor out common term -x+4 by using distributive property.
-2x^{2}+9x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
Square 9.
x=\frac{-9±\sqrt{81+8\left(-4\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-9±\sqrt{81-32}}{2\left(-2\right)}
Multiply 8 times -4.
x=\frac{-9±\sqrt{49}}{2\left(-2\right)}
Add 81 to -32.
x=\frac{-9±7}{2\left(-2\right)}
Take the square root of 49.
x=\frac{-9±7}{-4}
Multiply 2 times -2.
x=-\frac{2}{-4}
Now solve the equation x=\frac{-9±7}{-4} when ± is plus. Add -9 to 7.
x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{16}{-4}
Now solve the equation x=\frac{-9±7}{-4} when ± is minus. Subtract 7 from -9.
x=4
Divide -16 by -4.
-2x^{2}+9x-4=-2\left(x-\frac{1}{2}\right)\left(x-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2} for x_{1} and 4 for x_{2}.
-2x^{2}+9x-4=-2\times \frac{-2x+1}{-2}\left(x-4\right)
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-2x^{2}+9x-4=\left(-2x+1\right)\left(x-4\right)
Cancel out 2, the greatest common factor in -2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}