Solve for x
x=\frac{10y+14}{9}
Solve for y
y=\frac{9x}{10}-\frac{7}{5}
Graph
Share
Copied to clipboard
9x-14=10y
Add 10y to both sides. Anything plus zero gives itself.
9x=10y+14
Add 14 to both sides.
\frac{9x}{9}=\frac{10y+14}{9}
Divide both sides by 9.
x=\frac{10y+14}{9}
Dividing by 9 undoes the multiplication by 9.
-10y-14=-9x
Subtract 9x from both sides. Anything subtracted from zero gives its negation.
-10y=-9x+14
Add 14 to both sides.
-10y=14-9x
The equation is in standard form.
\frac{-10y}{-10}=\frac{14-9x}{-10}
Divide both sides by -10.
y=\frac{14-9x}{-10}
Dividing by -10 undoes the multiplication by -10.
y=\frac{9x}{10}-\frac{7}{5}
Divide -9x+14 by -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}