Solve for x
x=\frac{\sqrt{677}}{6}+\frac{77}{18}\approx 8.614315055
x=-\frac{\sqrt{677}}{6}+\frac{77}{18}\approx -0.058759499
Graph
Share
Copied to clipboard
\left(9x+2\right)^{2}=\left(3\sqrt{81x+5}\right)^{2}
Square both sides of the equation.
81x^{2}+36x+4=\left(3\sqrt{81x+5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+2\right)^{2}.
81x^{2}+36x+4=3^{2}\left(\sqrt{81x+5}\right)^{2}
Expand \left(3\sqrt{81x+5}\right)^{2}.
81x^{2}+36x+4=9\left(\sqrt{81x+5}\right)^{2}
Calculate 3 to the power of 2 and get 9.
81x^{2}+36x+4=9\left(81x+5\right)
Calculate \sqrt{81x+5} to the power of 2 and get 81x+5.
81x^{2}+36x+4=729x+45
Use the distributive property to multiply 9 by 81x+5.
81x^{2}+36x+4-729x=45
Subtract 729x from both sides.
81x^{2}-693x+4=45
Combine 36x and -729x to get -693x.
81x^{2}-693x+4-45=0
Subtract 45 from both sides.
81x^{2}-693x-41=0
Subtract 45 from 4 to get -41.
x=\frac{-\left(-693\right)±\sqrt{\left(-693\right)^{2}-4\times 81\left(-41\right)}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, -693 for b, and -41 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-693\right)±\sqrt{480249-4\times 81\left(-41\right)}}{2\times 81}
Square -693.
x=\frac{-\left(-693\right)±\sqrt{480249-324\left(-41\right)}}{2\times 81}
Multiply -4 times 81.
x=\frac{-\left(-693\right)±\sqrt{480249+13284}}{2\times 81}
Multiply -324 times -41.
x=\frac{-\left(-693\right)±\sqrt{493533}}{2\times 81}
Add 480249 to 13284.
x=\frac{-\left(-693\right)±27\sqrt{677}}{2\times 81}
Take the square root of 493533.
x=\frac{693±27\sqrt{677}}{2\times 81}
The opposite of -693 is 693.
x=\frac{693±27\sqrt{677}}{162}
Multiply 2 times 81.
x=\frac{27\sqrt{677}+693}{162}
Now solve the equation x=\frac{693±27\sqrt{677}}{162} when ± is plus. Add 693 to 27\sqrt{677}.
x=\frac{\sqrt{677}}{6}+\frac{77}{18}
Divide 693+27\sqrt{677} by 162.
x=\frac{693-27\sqrt{677}}{162}
Now solve the equation x=\frac{693±27\sqrt{677}}{162} when ± is minus. Subtract 27\sqrt{677} from 693.
x=-\frac{\sqrt{677}}{6}+\frac{77}{18}
Divide 693-27\sqrt{677} by 162.
x=\frac{\sqrt{677}}{6}+\frac{77}{18} x=-\frac{\sqrt{677}}{6}+\frac{77}{18}
The equation is now solved.
9\left(\frac{\sqrt{677}}{6}+\frac{77}{18}\right)+2=3\sqrt{81\left(\frac{\sqrt{677}}{6}+\frac{77}{18}\right)+5}
Substitute \frac{\sqrt{677}}{6}+\frac{77}{18} for x in the equation 9x+2=3\sqrt{81x+5}.
\frac{3}{2}\times 677^{\frac{1}{2}}+\frac{81}{2}=\frac{81}{2}+\frac{3}{2}\times 677^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{677}}{6}+\frac{77}{18} satisfies the equation.
9\left(-\frac{\sqrt{677}}{6}+\frac{77}{18}\right)+2=3\sqrt{81\left(-\frac{\sqrt{677}}{6}+\frac{77}{18}\right)+5}
Substitute -\frac{\sqrt{677}}{6}+\frac{77}{18} for x in the equation 9x+2=3\sqrt{81x+5}.
-\frac{3}{2}\times 677^{\frac{1}{2}}+\frac{81}{2}=\frac{81}{2}-\frac{3}{2}\times 677^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{677}}{6}+\frac{77}{18} satisfies the equation.
x=\frac{\sqrt{677}}{6}+\frac{77}{18} x=-\frac{\sqrt{677}}{6}+\frac{77}{18}
List all solutions of 9x+2=3\sqrt{81x+5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}