Evaluate
\frac{9x\left(x-1\right)}{\left(x+1\right)\left(9x+5\right)}
Expand
\frac{9\left(x^{2}-x\right)}{\left(x+1\right)\left(9x+5\right)}
Graph
Share
Copied to clipboard
\frac{9x\left(x-1\right)}{\left(5+9x\right)\left(1+x\right)}
Express \frac{\frac{9x\left(x-1\right)}{5+9x}}{1+x} as a single fraction.
\frac{9x^{2}-9x}{\left(5+9x\right)\left(1+x\right)}
Use the distributive property to multiply 9x by x-1.
\frac{9x^{2}-9x}{5+5x+9x+9x^{2}}
Apply the distributive property by multiplying each term of 5+9x by each term of 1+x.
\frac{9x^{2}-9x}{5+14x+9x^{2}}
Combine 5x and 9x to get 14x.
\frac{9x\left(x-1\right)}{\left(5+9x\right)\left(1+x\right)}
Express \frac{\frac{9x\left(x-1\right)}{5+9x}}{1+x} as a single fraction.
\frac{9x^{2}-9x}{\left(5+9x\right)\left(1+x\right)}
Use the distributive property to multiply 9x by x-1.
\frac{9x^{2}-9x}{5+5x+9x+9x^{2}}
Apply the distributive property by multiplying each term of 5+9x by each term of 1+x.
\frac{9x^{2}-9x}{5+14x+9x^{2}}
Combine 5x and 9x to get 14x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}