Solve for f
f=-\frac{1}{3}\approx -0.333333333
Share
Copied to clipboard
9f=\frac{1}{2}\times 12f+\frac{1}{2}\left(-2\right)
Use the distributive property to multiply \frac{1}{2} by 12f-2.
9f=\frac{12}{2}f+\frac{1}{2}\left(-2\right)
Multiply \frac{1}{2} and 12 to get \frac{12}{2}.
9f=6f+\frac{1}{2}\left(-2\right)
Divide 12 by 2 to get 6.
9f=6f+\frac{-2}{2}
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
9f=6f-1
Divide -2 by 2 to get -1.
9f-6f=-1
Subtract 6f from both sides.
3f=-1
Combine 9f and -6f to get 3f.
f=\frac{-1}{3}
Divide both sides by 3.
f=-\frac{1}{3}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}