Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+200x=99814000
Swap sides so that all variable terms are on the left hand side.
x^{2}+200x-99814000=0
Subtract 99814000 from both sides.
x=\frac{-200±\sqrt{200^{2}-4\left(-99814000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 200 for b, and -99814000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-99814000\right)}}{2}
Square 200.
x=\frac{-200±\sqrt{40000+399256000}}{2}
Multiply -4 times -99814000.
x=\frac{-200±\sqrt{399296000}}{2}
Add 40000 to 399256000.
x=\frac{-200±80\sqrt{62390}}{2}
Take the square root of 399296000.
x=\frac{80\sqrt{62390}-200}{2}
Now solve the equation x=\frac{-200±80\sqrt{62390}}{2} when ± is plus. Add -200 to 80\sqrt{62390}.
x=40\sqrt{62390}-100
Divide -200+80\sqrt{62390} by 2.
x=\frac{-80\sqrt{62390}-200}{2}
Now solve the equation x=\frac{-200±80\sqrt{62390}}{2} when ± is minus. Subtract 80\sqrt{62390} from -200.
x=-40\sqrt{62390}-100
Divide -200-80\sqrt{62390} by 2.
x=40\sqrt{62390}-100 x=-40\sqrt{62390}-100
The equation is now solved.
x^{2}+200x=99814000
Swap sides so that all variable terms are on the left hand side.
x^{2}+200x+100^{2}=99814000+100^{2}
Divide 200, the coefficient of the x term, by 2 to get 100. Then add the square of 100 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+200x+10000=99814000+10000
Square 100.
x^{2}+200x+10000=99824000
Add 99814000 to 10000.
\left(x+100\right)^{2}=99824000
Factor x^{2}+200x+10000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+100\right)^{2}}=\sqrt{99824000}
Take the square root of both sides of the equation.
x+100=40\sqrt{62390} x+100=-40\sqrt{62390}
Simplify.
x=40\sqrt{62390}-100 x=-40\sqrt{62390}-100
Subtract 100 from both sides of the equation.