Evaluate
\frac{12369}{4}=3092.25
Factor
\frac{3 \cdot 7 \cdot 19 \cdot 31}{2 ^ {2}} = 3092\frac{1}{4} = 3092.25
Share
Copied to clipboard
\frac{396+3}{4}+1\times \frac{99\times 4+3}{4}+29\times \frac{99\times 4+3}{4}
Multiply 99 and 4 to get 396.
\frac{399}{4}+1\times \frac{99\times 4+3}{4}+29\times \frac{99\times 4+3}{4}
Add 396 and 3 to get 399.
\frac{399}{4}+1\times \frac{396+3}{4}+29\times \frac{99\times 4+3}{4}
Multiply 99 and 4 to get 396.
\frac{399}{4}+1\times \frac{399}{4}+29\times \frac{99\times 4+3}{4}
Add 396 and 3 to get 399.
\frac{399}{4}+\frac{399}{4}+29\times \frac{99\times 4+3}{4}
Multiply 1 and \frac{399}{4} to get \frac{399}{4}.
\frac{399+399}{4}+29\times \frac{99\times 4+3}{4}
Since \frac{399}{4} and \frac{399}{4} have the same denominator, add them by adding their numerators.
\frac{798}{4}+29\times \frac{99\times 4+3}{4}
Add 399 and 399 to get 798.
\frac{399}{2}+29\times \frac{99\times 4+3}{4}
Reduce the fraction \frac{798}{4} to lowest terms by extracting and canceling out 2.
\frac{399}{2}+29\times \frac{396+3}{4}
Multiply 99 and 4 to get 396.
\frac{399}{2}+29\times \frac{399}{4}
Add 396 and 3 to get 399.
\frac{399}{2}+\frac{29\times 399}{4}
Express 29\times \frac{399}{4} as a single fraction.
\frac{399}{2}+\frac{11571}{4}
Multiply 29 and 399 to get 11571.
\frac{798}{4}+\frac{11571}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{399}{2} and \frac{11571}{4} to fractions with denominator 4.
\frac{798+11571}{4}
Since \frac{798}{4} and \frac{11571}{4} have the same denominator, add them by adding their numerators.
\frac{12369}{4}
Add 798 and 11571 to get 12369.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}