Evaluate
\frac{197}{20}=9.85
Factor
\frac{197}{2 ^ {2} \cdot 5} = 9\frac{17}{20} = 9.85
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)985}\\\end{array}
Use the 1^{st} digit 9 from dividend 985
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)985}\\\end{array}
Since 9 is less than 100, use the next digit 8 from dividend 985 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)985}\\\end{array}
Use the 2^{nd} digit 8 from dividend 985
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)985}\\\end{array}
Since 98 is less than 100, use the next digit 5 from dividend 985 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)985}\\\end{array}
Use the 3^{rd} digit 5 from dividend 985
\begin{array}{l}\phantom{100)}009\phantom{6}\\100\overline{)985}\\\phantom{100)}\underline{\phantom{}900\phantom{}}\\\phantom{100)9}85\\\end{array}
Find closest multiple of 100 to 985. We see that 9 \times 100 = 900 is the nearest. Now subtract 900 from 985 to get reminder 85. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }85
Since 85 is less than 100, stop the division. The reminder is 85. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}