Solve for x
x=-\frac{24x_{0}}{25}+980
Solve for x_0
x_{0}=-\frac{25x}{24}+\frac{6125}{6}
Graph
Share
Copied to clipboard
980=x+x_{0}\times 0.6+x_{0}\times 0.36
Multiply 0.6 and 0.6 to get 0.36.
980=x+0.96x_{0}
Combine x_{0}\times 0.6 and x_{0}\times 0.36 to get 0.96x_{0}.
x+0.96x_{0}=980
Swap sides so that all variable terms are on the left hand side.
x=980-0.96x_{0}
Subtract 0.96x_{0} from both sides.
980=x+x_{0}\times 0.6+x_{0}\times 0.36
Multiply 0.6 and 0.6 to get 0.36.
980=x+0.96x_{0}
Combine x_{0}\times 0.6 and x_{0}\times 0.36 to get 0.96x_{0}.
x+0.96x_{0}=980
Swap sides so that all variable terms are on the left hand side.
0.96x_{0}=980-x
Subtract x from both sides.
\frac{0.96x_{0}}{0.96}=\frac{980-x}{0.96}
Divide both sides of the equation by 0.96, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{0}=\frac{980-x}{0.96}
Dividing by 0.96 undoes the multiplication by 0.96.
x_{0}=-\frac{25x}{24}+\frac{6125}{6}
Divide 980-x by 0.96 by multiplying 980-x by the reciprocal of 0.96.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}