Evaluate
\frac{49}{44}\approx 1.113636364
Factor
\frac{7 ^ {2}}{2 ^ {2} \cdot 11} = 1\frac{5}{44} = 1.1136363636363635
Share
Copied to clipboard
\begin{array}{l}\phantom{88)}\phantom{1}\\88\overline{)98}\\\end{array}
Use the 1^{st} digit 9 from dividend 98
\begin{array}{l}\phantom{88)}0\phantom{2}\\88\overline{)98}\\\end{array}
Since 9 is less than 88, use the next digit 8 from dividend 98 and add 0 to the quotient
\begin{array}{l}\phantom{88)}0\phantom{3}\\88\overline{)98}\\\end{array}
Use the 2^{nd} digit 8 from dividend 98
\begin{array}{l}\phantom{88)}01\phantom{4}\\88\overline{)98}\\\phantom{88)}\underline{\phantom{}88\phantom{}}\\\phantom{88)}10\\\end{array}
Find closest multiple of 88 to 98. We see that 1 \times 88 = 88 is the nearest. Now subtract 88 from 98 to get reminder 10. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }10
Since 10 is less than 88, stop the division. The reminder is 10. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}