Evaluate
\frac{488}{21}\approx 23.238095238
Factor
\frac{2 ^ {3} \cdot 61}{3 \cdot 7} = 23\frac{5}{21} = 23.238095238095237
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)976}\\\end{array}
Use the 1^{st} digit 9 from dividend 976
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)976}\\\end{array}
Since 9 is less than 42, use the next digit 7 from dividend 976 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)976}\\\end{array}
Use the 2^{nd} digit 7 from dividend 976
\begin{array}{l}\phantom{42)}02\phantom{4}\\42\overline{)976}\\\phantom{42)}\underline{\phantom{}84\phantom{9}}\\\phantom{42)}13\\\end{array}
Find closest multiple of 42 to 97. We see that 2 \times 42 = 84 is the nearest. Now subtract 84 from 97 to get reminder 13. Add 2 to quotient.
\begin{array}{l}\phantom{42)}02\phantom{5}\\42\overline{)976}\\\phantom{42)}\underline{\phantom{}84\phantom{9}}\\\phantom{42)}136\\\end{array}
Use the 3^{rd} digit 6 from dividend 976
\begin{array}{l}\phantom{42)}023\phantom{6}\\42\overline{)976}\\\phantom{42)}\underline{\phantom{}84\phantom{9}}\\\phantom{42)}136\\\phantom{42)}\underline{\phantom{}126\phantom{}}\\\phantom{42)9}10\\\end{array}
Find closest multiple of 42 to 136. We see that 3 \times 42 = 126 is the nearest. Now subtract 126 from 136 to get reminder 10. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }10
Since 10 is less than 42, stop the division. The reminder is 10. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}