Evaluate
65
Factor
5\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)975}\\\end{array}
Use the 1^{st} digit 9 from dividend 975
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)975}\\\end{array}
Since 9 is less than 15, use the next digit 7 from dividend 975 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)975}\\\end{array}
Use the 2^{nd} digit 7 from dividend 975
\begin{array}{l}\phantom{15)}06\phantom{4}\\15\overline{)975}\\\phantom{15)}\underline{\phantom{}90\phantom{9}}\\\phantom{15)9}7\\\end{array}
Find closest multiple of 15 to 97. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 97 to get reminder 7. Add 6 to quotient.
\begin{array}{l}\phantom{15)}06\phantom{5}\\15\overline{)975}\\\phantom{15)}\underline{\phantom{}90\phantom{9}}\\\phantom{15)9}75\\\end{array}
Use the 3^{rd} digit 5 from dividend 975
\begin{array}{l}\phantom{15)}065\phantom{6}\\15\overline{)975}\\\phantom{15)}\underline{\phantom{}90\phantom{9}}\\\phantom{15)9}75\\\phantom{15)}\underline{\phantom{9}75\phantom{}}\\\phantom{15)999}0\\\end{array}
Find closest multiple of 15 to 75. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 75 to get reminder 0. Add 5 to quotient.
\text{Quotient: }65 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 065 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 65.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}