Evaluate
\frac{974}{51}\approx 19.098039216
Factor
\frac{2 \cdot 487}{3 \cdot 17} = 19\frac{5}{51} = 19.098039215686274
Share
Copied to clipboard
\begin{array}{l}\phantom{51)}\phantom{1}\\51\overline{)974}\\\end{array}
Use the 1^{st} digit 9 from dividend 974
\begin{array}{l}\phantom{51)}0\phantom{2}\\51\overline{)974}\\\end{array}
Since 9 is less than 51, use the next digit 7 from dividend 974 and add 0 to the quotient
\begin{array}{l}\phantom{51)}0\phantom{3}\\51\overline{)974}\\\end{array}
Use the 2^{nd} digit 7 from dividend 974
\begin{array}{l}\phantom{51)}01\phantom{4}\\51\overline{)974}\\\phantom{51)}\underline{\phantom{}51\phantom{9}}\\\phantom{51)}46\\\end{array}
Find closest multiple of 51 to 97. We see that 1 \times 51 = 51 is the nearest. Now subtract 51 from 97 to get reminder 46. Add 1 to quotient.
\begin{array}{l}\phantom{51)}01\phantom{5}\\51\overline{)974}\\\phantom{51)}\underline{\phantom{}51\phantom{9}}\\\phantom{51)}464\\\end{array}
Use the 3^{rd} digit 4 from dividend 974
\begin{array}{l}\phantom{51)}019\phantom{6}\\51\overline{)974}\\\phantom{51)}\underline{\phantom{}51\phantom{9}}\\\phantom{51)}464\\\phantom{51)}\underline{\phantom{}459\phantom{}}\\\phantom{51)99}5\\\end{array}
Find closest multiple of 51 to 464. We see that 9 \times 51 = 459 is the nearest. Now subtract 459 from 464 to get reminder 5. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }5
Since 5 is less than 51, stop the division. The reminder is 5. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}