Evaluate
\frac{139}{12}\approx 11.583333333
Factor
\frac{139}{2 ^ {2} \cdot 3} = 11\frac{7}{12} = 11.583333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{84)}\phantom{1}\\84\overline{)973}\\\end{array}
Use the 1^{st} digit 9 from dividend 973
\begin{array}{l}\phantom{84)}0\phantom{2}\\84\overline{)973}\\\end{array}
Since 9 is less than 84, use the next digit 7 from dividend 973 and add 0 to the quotient
\begin{array}{l}\phantom{84)}0\phantom{3}\\84\overline{)973}\\\end{array}
Use the 2^{nd} digit 7 from dividend 973
\begin{array}{l}\phantom{84)}01\phantom{4}\\84\overline{)973}\\\phantom{84)}\underline{\phantom{}84\phantom{9}}\\\phantom{84)}13\\\end{array}
Find closest multiple of 84 to 97. We see that 1 \times 84 = 84 is the nearest. Now subtract 84 from 97 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{84)}01\phantom{5}\\84\overline{)973}\\\phantom{84)}\underline{\phantom{}84\phantom{9}}\\\phantom{84)}133\\\end{array}
Use the 3^{rd} digit 3 from dividend 973
\begin{array}{l}\phantom{84)}011\phantom{6}\\84\overline{)973}\\\phantom{84)}\underline{\phantom{}84\phantom{9}}\\\phantom{84)}133\\\phantom{84)}\underline{\phantom{9}84\phantom{}}\\\phantom{84)9}49\\\end{array}
Find closest multiple of 84 to 133. We see that 1 \times 84 = 84 is the nearest. Now subtract 84 from 133 to get reminder 49. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }49
Since 49 is less than 84, stop the division. The reminder is 49. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}