Evaluate
\frac{486}{5}=97.2
Factor
\frac{2 \cdot 3 ^ {5}}{5} = 97\frac{1}{5} = 97.2
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)972}\\\end{array}
Use the 1^{st} digit 9 from dividend 972
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)972}\\\end{array}
Since 9 is less than 10, use the next digit 7 from dividend 972 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)972}\\\end{array}
Use the 2^{nd} digit 7 from dividend 972
\begin{array}{l}\phantom{10)}09\phantom{4}\\10\overline{)972}\\\phantom{10)}\underline{\phantom{}90\phantom{9}}\\\phantom{10)9}7\\\end{array}
Find closest multiple of 10 to 97. We see that 9 \times 10 = 90 is the nearest. Now subtract 90 from 97 to get reminder 7. Add 9 to quotient.
\begin{array}{l}\phantom{10)}09\phantom{5}\\10\overline{)972}\\\phantom{10)}\underline{\phantom{}90\phantom{9}}\\\phantom{10)9}72\\\end{array}
Use the 3^{rd} digit 2 from dividend 972
\begin{array}{l}\phantom{10)}097\phantom{6}\\10\overline{)972}\\\phantom{10)}\underline{\phantom{}90\phantom{9}}\\\phantom{10)9}72\\\phantom{10)}\underline{\phantom{9}70\phantom{}}\\\phantom{10)99}2\\\end{array}
Find closest multiple of 10 to 72. We see that 7 \times 10 = 70 is the nearest. Now subtract 70 from 72 to get reminder 2. Add 7 to quotient.
\text{Quotient: }97 \text{Reminder: }2
Since 2 is less than 10, stop the division. The reminder is 2. The topmost line 097 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 97.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}