Evaluate
\frac{965505}{2321}\approx 415.986643688
Factor
\frac{3 \cdot 5 \cdot 191 \cdot 337}{11 \cdot 211} = 415\frac{2290}{2321} = 415.9866436880655
Share
Copied to clipboard
\begin{array}{l}\phantom{2321)}\phantom{1}\\2321\overline{)965505}\\\end{array}
Use the 1^{st} digit 9 from dividend 965505
\begin{array}{l}\phantom{2321)}0\phantom{2}\\2321\overline{)965505}\\\end{array}
Since 9 is less than 2321, use the next digit 6 from dividend 965505 and add 0 to the quotient
\begin{array}{l}\phantom{2321)}0\phantom{3}\\2321\overline{)965505}\\\end{array}
Use the 2^{nd} digit 6 from dividend 965505
\begin{array}{l}\phantom{2321)}00\phantom{4}\\2321\overline{)965505}\\\end{array}
Since 96 is less than 2321, use the next digit 5 from dividend 965505 and add 0 to the quotient
\begin{array}{l}\phantom{2321)}00\phantom{5}\\2321\overline{)965505}\\\end{array}
Use the 3^{rd} digit 5 from dividend 965505
\begin{array}{l}\phantom{2321)}000\phantom{6}\\2321\overline{)965505}\\\end{array}
Since 965 is less than 2321, use the next digit 5 from dividend 965505 and add 0 to the quotient
\begin{array}{l}\phantom{2321)}000\phantom{7}\\2321\overline{)965505}\\\end{array}
Use the 4^{th} digit 5 from dividend 965505
\begin{array}{l}\phantom{2321)}0004\phantom{8}\\2321\overline{)965505}\\\phantom{2321)}\underline{\phantom{}9284\phantom{99}}\\\phantom{2321)9}371\\\end{array}
Find closest multiple of 2321 to 9655. We see that 4 \times 2321 = 9284 is the nearest. Now subtract 9284 from 9655 to get reminder 371. Add 4 to quotient.
\begin{array}{l}\phantom{2321)}0004\phantom{9}\\2321\overline{)965505}\\\phantom{2321)}\underline{\phantom{}9284\phantom{99}}\\\phantom{2321)9}3710\\\end{array}
Use the 5^{th} digit 0 from dividend 965505
\begin{array}{l}\phantom{2321)}00041\phantom{10}\\2321\overline{)965505}\\\phantom{2321)}\underline{\phantom{}9284\phantom{99}}\\\phantom{2321)9}3710\\\phantom{2321)}\underline{\phantom{9}2321\phantom{9}}\\\phantom{2321)9}1389\\\end{array}
Find closest multiple of 2321 to 3710. We see that 1 \times 2321 = 2321 is the nearest. Now subtract 2321 from 3710 to get reminder 1389. Add 1 to quotient.
\begin{array}{l}\phantom{2321)}00041\phantom{11}\\2321\overline{)965505}\\\phantom{2321)}\underline{\phantom{}9284\phantom{99}}\\\phantom{2321)9}3710\\\phantom{2321)}\underline{\phantom{9}2321\phantom{9}}\\\phantom{2321)9}13895\\\end{array}
Use the 6^{th} digit 5 from dividend 965505
\begin{array}{l}\phantom{2321)}000415\phantom{12}\\2321\overline{)965505}\\\phantom{2321)}\underline{\phantom{}9284\phantom{99}}\\\phantom{2321)9}3710\\\phantom{2321)}\underline{\phantom{9}2321\phantom{9}}\\\phantom{2321)9}13895\\\phantom{2321)}\underline{\phantom{9}11605\phantom{}}\\\phantom{2321)99}2290\\\end{array}
Find closest multiple of 2321 to 13895. We see that 5 \times 2321 = 11605 is the nearest. Now subtract 11605 from 13895 to get reminder 2290. Add 5 to quotient.
\text{Quotient: }415 \text{Reminder: }2290
Since 2290 is less than 2321, stop the division. The reminder is 2290. The topmost line 000415 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 415.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}