Evaluate
\frac{965}{76}\approx 12.697368421
Factor
\frac{5 \cdot 193}{2 ^ {2} \cdot 19} = 12\frac{53}{76} = 12.697368421052632
Share
Copied to clipboard
\begin{array}{l}\phantom{76)}\phantom{1}\\76\overline{)965}\\\end{array}
Use the 1^{st} digit 9 from dividend 965
\begin{array}{l}\phantom{76)}0\phantom{2}\\76\overline{)965}\\\end{array}
Since 9 is less than 76, use the next digit 6 from dividend 965 and add 0 to the quotient
\begin{array}{l}\phantom{76)}0\phantom{3}\\76\overline{)965}\\\end{array}
Use the 2^{nd} digit 6 from dividend 965
\begin{array}{l}\phantom{76)}01\phantom{4}\\76\overline{)965}\\\phantom{76)}\underline{\phantom{}76\phantom{9}}\\\phantom{76)}20\\\end{array}
Find closest multiple of 76 to 96. We see that 1 \times 76 = 76 is the nearest. Now subtract 76 from 96 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{76)}01\phantom{5}\\76\overline{)965}\\\phantom{76)}\underline{\phantom{}76\phantom{9}}\\\phantom{76)}205\\\end{array}
Use the 3^{rd} digit 5 from dividend 965
\begin{array}{l}\phantom{76)}012\phantom{6}\\76\overline{)965}\\\phantom{76)}\underline{\phantom{}76\phantom{9}}\\\phantom{76)}205\\\phantom{76)}\underline{\phantom{}152\phantom{}}\\\phantom{76)9}53\\\end{array}
Find closest multiple of 76 to 205. We see that 2 \times 76 = 152 is the nearest. Now subtract 152 from 205 to get reminder 53. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }53
Since 53 is less than 76, stop the division. The reminder is 53. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}