Evaluate
12354
Factor
2\times 3\times 29\times 71
Share
Copied to clipboard
\begin{array}{l}\phantom{78)}\phantom{1}\\78\overline{)963612}\\\end{array}
Use the 1^{st} digit 9 from dividend 963612
\begin{array}{l}\phantom{78)}0\phantom{2}\\78\overline{)963612}\\\end{array}
Since 9 is less than 78, use the next digit 6 from dividend 963612 and add 0 to the quotient
\begin{array}{l}\phantom{78)}0\phantom{3}\\78\overline{)963612}\\\end{array}
Use the 2^{nd} digit 6 from dividend 963612
\begin{array}{l}\phantom{78)}01\phantom{4}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}18\\\end{array}
Find closest multiple of 78 to 96. We see that 1 \times 78 = 78 is the nearest. Now subtract 78 from 96 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{78)}01\phantom{5}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}183\\\end{array}
Use the 3^{rd} digit 3 from dividend 963612
\begin{array}{l}\phantom{78)}012\phantom{6}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}183\\\phantom{78)}\underline{\phantom{}156\phantom{999}}\\\phantom{78)9}27\\\end{array}
Find closest multiple of 78 to 183. We see that 2 \times 78 = 156 is the nearest. Now subtract 156 from 183 to get reminder 27. Add 2 to quotient.
\begin{array}{l}\phantom{78)}012\phantom{7}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}183\\\phantom{78)}\underline{\phantom{}156\phantom{999}}\\\phantom{78)9}276\\\end{array}
Use the 4^{th} digit 6 from dividend 963612
\begin{array}{l}\phantom{78)}0123\phantom{8}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}183\\\phantom{78)}\underline{\phantom{}156\phantom{999}}\\\phantom{78)9}276\\\phantom{78)}\underline{\phantom{9}234\phantom{99}}\\\phantom{78)99}42\\\end{array}
Find closest multiple of 78 to 276. We see that 3 \times 78 = 234 is the nearest. Now subtract 234 from 276 to get reminder 42. Add 3 to quotient.
\begin{array}{l}\phantom{78)}0123\phantom{9}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}183\\\phantom{78)}\underline{\phantom{}156\phantom{999}}\\\phantom{78)9}276\\\phantom{78)}\underline{\phantom{9}234\phantom{99}}\\\phantom{78)99}421\\\end{array}
Use the 5^{th} digit 1 from dividend 963612
\begin{array}{l}\phantom{78)}01235\phantom{10}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}183\\\phantom{78)}\underline{\phantom{}156\phantom{999}}\\\phantom{78)9}276\\\phantom{78)}\underline{\phantom{9}234\phantom{99}}\\\phantom{78)99}421\\\phantom{78)}\underline{\phantom{99}390\phantom{9}}\\\phantom{78)999}31\\\end{array}
Find closest multiple of 78 to 421. We see that 5 \times 78 = 390 is the nearest. Now subtract 390 from 421 to get reminder 31. Add 5 to quotient.
\begin{array}{l}\phantom{78)}01235\phantom{11}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}183\\\phantom{78)}\underline{\phantom{}156\phantom{999}}\\\phantom{78)9}276\\\phantom{78)}\underline{\phantom{9}234\phantom{99}}\\\phantom{78)99}421\\\phantom{78)}\underline{\phantom{99}390\phantom{9}}\\\phantom{78)999}312\\\end{array}
Use the 6^{th} digit 2 from dividend 963612
\begin{array}{l}\phantom{78)}012354\phantom{12}\\78\overline{)963612}\\\phantom{78)}\underline{\phantom{}78\phantom{9999}}\\\phantom{78)}183\\\phantom{78)}\underline{\phantom{}156\phantom{999}}\\\phantom{78)9}276\\\phantom{78)}\underline{\phantom{9}234\phantom{99}}\\\phantom{78)99}421\\\phantom{78)}\underline{\phantom{99}390\phantom{9}}\\\phantom{78)999}312\\\phantom{78)}\underline{\phantom{999}312\phantom{}}\\\phantom{78)999999}0\\\end{array}
Find closest multiple of 78 to 312. We see that 4 \times 78 = 312 is the nearest. Now subtract 312 from 312 to get reminder 0. Add 4 to quotient.
\text{Quotient: }12354 \text{Reminder: }0
Since 0 is less than 78, stop the division. The reminder is 0. The topmost line 012354 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12354.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}