Solve for x
x=\sqrt{1081}+9\approx 41.878564446
x=9-\sqrt{1081}\approx -23.878564446
Graph
Share
Copied to clipboard
1920=\left(2-6-2x\right)\left(20-x\right)
Multiply 96 and 20 to get 1920.
1920=\left(-4-2x\right)\left(20-x\right)
Subtract 6 from 2 to get -4.
1920=-80-36x+2x^{2}
Use the distributive property to multiply -4-2x by 20-x and combine like terms.
-80-36x+2x^{2}=1920
Swap sides so that all variable terms are on the left hand side.
-80-36x+2x^{2}-1920=0
Subtract 1920 from both sides.
-2000-36x+2x^{2}=0
Subtract 1920 from -80 to get -2000.
2x^{2}-36x-2000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 2\left(-2000\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -36 for b, and -2000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 2\left(-2000\right)}}{2\times 2}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-8\left(-2000\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-36\right)±\sqrt{1296+16000}}{2\times 2}
Multiply -8 times -2000.
x=\frac{-\left(-36\right)±\sqrt{17296}}{2\times 2}
Add 1296 to 16000.
x=\frac{-\left(-36\right)±4\sqrt{1081}}{2\times 2}
Take the square root of 17296.
x=\frac{36±4\sqrt{1081}}{2\times 2}
The opposite of -36 is 36.
x=\frac{36±4\sqrt{1081}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{1081}+36}{4}
Now solve the equation x=\frac{36±4\sqrt{1081}}{4} when ± is plus. Add 36 to 4\sqrt{1081}.
x=\sqrt{1081}+9
Divide 36+4\sqrt{1081} by 4.
x=\frac{36-4\sqrt{1081}}{4}
Now solve the equation x=\frac{36±4\sqrt{1081}}{4} when ± is minus. Subtract 4\sqrt{1081} from 36.
x=9-\sqrt{1081}
Divide 36-4\sqrt{1081} by 4.
x=\sqrt{1081}+9 x=9-\sqrt{1081}
The equation is now solved.
1920=\left(2-6-2x\right)\left(20-x\right)
Multiply 96 and 20 to get 1920.
1920=\left(-4-2x\right)\left(20-x\right)
Subtract 6 from 2 to get -4.
1920=-80-36x+2x^{2}
Use the distributive property to multiply -4-2x by 20-x and combine like terms.
-80-36x+2x^{2}=1920
Swap sides so that all variable terms are on the left hand side.
-36x+2x^{2}=1920+80
Add 80 to both sides.
-36x+2x^{2}=2000
Add 1920 and 80 to get 2000.
2x^{2}-36x=2000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-36x}{2}=\frac{2000}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{36}{2}\right)x=\frac{2000}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-18x=\frac{2000}{2}
Divide -36 by 2.
x^{2}-18x=1000
Divide 2000 by 2.
x^{2}-18x+\left(-9\right)^{2}=1000+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=1000+81
Square -9.
x^{2}-18x+81=1081
Add 1000 to 81.
\left(x-9\right)^{2}=1081
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{1081}
Take the square root of both sides of the equation.
x-9=\sqrt{1081} x-9=-\sqrt{1081}
Simplify.
x=\sqrt{1081}+9 x=9-\sqrt{1081}
Add 9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}