Evaluate
\frac{959}{97}\approx 9.886597938
Factor
\frac{7 \cdot 137}{97} = 9\frac{86}{97} = 9.88659793814433
Share
Copied to clipboard
\begin{array}{l}\phantom{97)}\phantom{1}\\97\overline{)959}\\\end{array}
Use the 1^{st} digit 9 from dividend 959
\begin{array}{l}\phantom{97)}0\phantom{2}\\97\overline{)959}\\\end{array}
Since 9 is less than 97, use the next digit 5 from dividend 959 and add 0 to the quotient
\begin{array}{l}\phantom{97)}0\phantom{3}\\97\overline{)959}\\\end{array}
Use the 2^{nd} digit 5 from dividend 959
\begin{array}{l}\phantom{97)}00\phantom{4}\\97\overline{)959}\\\end{array}
Since 95 is less than 97, use the next digit 9 from dividend 959 and add 0 to the quotient
\begin{array}{l}\phantom{97)}00\phantom{5}\\97\overline{)959}\\\end{array}
Use the 3^{rd} digit 9 from dividend 959
\begin{array}{l}\phantom{97)}009\phantom{6}\\97\overline{)959}\\\phantom{97)}\underline{\phantom{}873\phantom{}}\\\phantom{97)9}86\\\end{array}
Find closest multiple of 97 to 959. We see that 9 \times 97 = 873 is the nearest. Now subtract 873 from 959 to get reminder 86. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }86
Since 86 is less than 97, stop the division. The reminder is 86. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}