Evaluate
\frac{95}{44}\approx 2.159090909
Factor
\frac{5 \cdot 19}{2 ^ {2} \cdot 11} = 2\frac{7}{44} = 2.159090909090909
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)95}\\\end{array}
Use the 1^{st} digit 9 from dividend 95
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)95}\\\end{array}
Since 9 is less than 44, use the next digit 5 from dividend 95 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)95}\\\end{array}
Use the 2^{nd} digit 5 from dividend 95
\begin{array}{l}\phantom{44)}02\phantom{4}\\44\overline{)95}\\\phantom{44)}\underline{\phantom{}88\phantom{}}\\\phantom{44)9}7\\\end{array}
Find closest multiple of 44 to 95. We see that 2 \times 44 = 88 is the nearest. Now subtract 88 from 95 to get reminder 7. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }7
Since 7 is less than 44, stop the division. The reminder is 7. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}