Solve for w
w=5\sqrt{215}\approx 73.314391493
w=-5\sqrt{215}\approx -73.314391493
Share
Copied to clipboard
9025+w^{2}=120^{2}
Calculate 95 to the power of 2 and get 9025.
9025+w^{2}=14400
Calculate 120 to the power of 2 and get 14400.
w^{2}=14400-9025
Subtract 9025 from both sides.
w^{2}=5375
Subtract 9025 from 14400 to get 5375.
w=5\sqrt{215} w=-5\sqrt{215}
Take the square root of both sides of the equation.
9025+w^{2}=120^{2}
Calculate 95 to the power of 2 and get 9025.
9025+w^{2}=14400
Calculate 120 to the power of 2 and get 14400.
9025+w^{2}-14400=0
Subtract 14400 from both sides.
-5375+w^{2}=0
Subtract 14400 from 9025 to get -5375.
w^{2}-5375=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
w=\frac{0±\sqrt{0^{2}-4\left(-5375\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -5375 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\left(-5375\right)}}{2}
Square 0.
w=\frac{0±\sqrt{21500}}{2}
Multiply -4 times -5375.
w=\frac{0±10\sqrt{215}}{2}
Take the square root of 21500.
w=5\sqrt{215}
Now solve the equation w=\frac{0±10\sqrt{215}}{2} when ± is plus.
w=-5\sqrt{215}
Now solve the equation w=\frac{0±10\sqrt{215}}{2} when ± is minus.
w=5\sqrt{215} w=-5\sqrt{215}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}