Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

95\left(x+1\right)^{2}=\left(x+1\right)\times 5+105
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
95\left(x^{2}+2x+1\right)=\left(x+1\right)\times 5+105
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
95x^{2}+190x+95=\left(x+1\right)\times 5+105
Use the distributive property to multiply 95 by x^{2}+2x+1.
95x^{2}+190x+95=5x+5+105
Use the distributive property to multiply x+1 by 5.
95x^{2}+190x+95=5x+110
Add 5 and 105 to get 110.
95x^{2}+190x+95-5x=110
Subtract 5x from both sides.
95x^{2}+185x+95=110
Combine 190x and -5x to get 185x.
95x^{2}+185x+95-110=0
Subtract 110 from both sides.
95x^{2}+185x-15=0
Subtract 110 from 95 to get -15.
x=\frac{-185±\sqrt{185^{2}-4\times 95\left(-15\right)}}{2\times 95}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 95 for a, 185 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-185±\sqrt{34225-4\times 95\left(-15\right)}}{2\times 95}
Square 185.
x=\frac{-185±\sqrt{34225-380\left(-15\right)}}{2\times 95}
Multiply -4 times 95.
x=\frac{-185±\sqrt{34225+5700}}{2\times 95}
Multiply -380 times -15.
x=\frac{-185±\sqrt{39925}}{2\times 95}
Add 34225 to 5700.
x=\frac{-185±5\sqrt{1597}}{2\times 95}
Take the square root of 39925.
x=\frac{-185±5\sqrt{1597}}{190}
Multiply 2 times 95.
x=\frac{5\sqrt{1597}-185}{190}
Now solve the equation x=\frac{-185±5\sqrt{1597}}{190} when ± is plus. Add -185 to 5\sqrt{1597}.
x=\frac{\sqrt{1597}-37}{38}
Divide -185+5\sqrt{1597} by 190.
x=\frac{-5\sqrt{1597}-185}{190}
Now solve the equation x=\frac{-185±5\sqrt{1597}}{190} when ± is minus. Subtract 5\sqrt{1597} from -185.
x=\frac{-\sqrt{1597}-37}{38}
Divide -185-5\sqrt{1597} by 190.
x=\frac{\sqrt{1597}-37}{38} x=\frac{-\sqrt{1597}-37}{38}
The equation is now solved.
95\left(x+1\right)^{2}=\left(x+1\right)\times 5+105
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
95\left(x^{2}+2x+1\right)=\left(x+1\right)\times 5+105
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
95x^{2}+190x+95=\left(x+1\right)\times 5+105
Use the distributive property to multiply 95 by x^{2}+2x+1.
95x^{2}+190x+95=5x+5+105
Use the distributive property to multiply x+1 by 5.
95x^{2}+190x+95=5x+110
Add 5 and 105 to get 110.
95x^{2}+190x+95-5x=110
Subtract 5x from both sides.
95x^{2}+185x+95=110
Combine 190x and -5x to get 185x.
95x^{2}+185x=110-95
Subtract 95 from both sides.
95x^{2}+185x=15
Subtract 95 from 110 to get 15.
\frac{95x^{2}+185x}{95}=\frac{15}{95}
Divide both sides by 95.
x^{2}+\frac{185}{95}x=\frac{15}{95}
Dividing by 95 undoes the multiplication by 95.
x^{2}+\frac{37}{19}x=\frac{15}{95}
Reduce the fraction \frac{185}{95} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{37}{19}x=\frac{3}{19}
Reduce the fraction \frac{15}{95} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{37}{19}x+\left(\frac{37}{38}\right)^{2}=\frac{3}{19}+\left(\frac{37}{38}\right)^{2}
Divide \frac{37}{19}, the coefficient of the x term, by 2 to get \frac{37}{38}. Then add the square of \frac{37}{38} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{37}{19}x+\frac{1369}{1444}=\frac{3}{19}+\frac{1369}{1444}
Square \frac{37}{38} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{37}{19}x+\frac{1369}{1444}=\frac{1597}{1444}
Add \frac{3}{19} to \frac{1369}{1444} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{37}{38}\right)^{2}=\frac{1597}{1444}
Factor x^{2}+\frac{37}{19}x+\frac{1369}{1444}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{37}{38}\right)^{2}}=\sqrt{\frac{1597}{1444}}
Take the square root of both sides of the equation.
x+\frac{37}{38}=\frac{\sqrt{1597}}{38} x+\frac{37}{38}=-\frac{\sqrt{1597}}{38}
Simplify.
x=\frac{\sqrt{1597}-37}{38} x=\frac{-\sqrt{1597}-37}{38}
Subtract \frac{37}{38} from both sides of the equation.