Evaluate
\frac{189}{4}=47.25
Factor
\frac{3 ^ {3} \cdot 7}{2 ^ {2}} = 47\frac{1}{4} = 47.25
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)945}\\\end{array}
Use the 1^{st} digit 9 from dividend 945
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)945}\\\end{array}
Since 9 is less than 20, use the next digit 4 from dividend 945 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)945}\\\end{array}
Use the 2^{nd} digit 4 from dividend 945
\begin{array}{l}\phantom{20)}04\phantom{4}\\20\overline{)945}\\\phantom{20)}\underline{\phantom{}80\phantom{9}}\\\phantom{20)}14\\\end{array}
Find closest multiple of 20 to 94. We see that 4 \times 20 = 80 is the nearest. Now subtract 80 from 94 to get reminder 14. Add 4 to quotient.
\begin{array}{l}\phantom{20)}04\phantom{5}\\20\overline{)945}\\\phantom{20)}\underline{\phantom{}80\phantom{9}}\\\phantom{20)}145\\\end{array}
Use the 3^{rd} digit 5 from dividend 945
\begin{array}{l}\phantom{20)}047\phantom{6}\\20\overline{)945}\\\phantom{20)}\underline{\phantom{}80\phantom{9}}\\\phantom{20)}145\\\phantom{20)}\underline{\phantom{}140\phantom{}}\\\phantom{20)99}5\\\end{array}
Find closest multiple of 20 to 145. We see that 7 \times 20 = 140 is the nearest. Now subtract 140 from 145 to get reminder 5. Add 7 to quotient.
\text{Quotient: }47 \text{Reminder: }5
Since 5 is less than 20, stop the division. The reminder is 5. The topmost line 047 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 47.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}